Skip to main content

Medical Decision Making Based 5D Cardiac MRI Segmentation Tools

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

In this survey, a comparison study between various tools in medical segmentation was proposed. This study serves to evaluate and estimate the adequacy and the impact of the blood flow in the clinical platform which made by GE Healthcare for cardiac MRI. A deep critical analysis of different image processing environments (Libraries, Turn-key, scripting, Data flow….). In the goal to resolve this issue, the major of the fifth dimension of blood flow to handle with the valvular stenosis and regurgitation for medical decision-making was introduced. The contour segmentation approach led to a loss of morphological information. An error rate was estimated when applying a contour to estimate the blood flow in the aortic valve. The interest of 4D cardiac sequence with its studies of the blood flow gives an innovative light to a new terminology of 5D imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonino, P.A.L., De Bruyne, B., Pijls, N.H.J., et al.: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009). https://doi.org/10.1056/NEJMoa0807611

    Article  Google Scholar 

  2. De Bruyne, B., Fearon, W.F., Pijls, N.H.J., et al.: Fractional flow reserve-guided PCI for stable coronary artery disease. N. Engl. J. Med. 371, 1208–1217 (2014). https://doi.org/10.1056/NEJMoa1408758

    Article  Google Scholar 

  3. Sakly, H., Said, M., Tagina, M.: Computer Methods and Programs for Medical Decision Making: 5D Cardiac Model. Eliva Press, Bd. Cuza-Voda, of.21, Chisinau, Republic of Moldova, Europe (2020)

    Google Scholar 

  4. Perez, J.A., Fernadez, R.G.: Design and implementation of a tool for the analysis and management of cardiac parameters. In: 2016 Computing in Cardiology Conference (CinC), pp. 377–380 (2016)

    Google Scholar 

  5. Muller, D.: Direct Volume Illustration for Cardiac Applications. PhD Dissertation, Queensland University of Technology (2008)

    Google Scholar 

  6. Kirschner, M., Jung, F., Wesarg, S.: Automatic prostate segmentation in mr images with a probabilistic active shape model. https://www.semanticscholar.org/paper/Automatic-Prostate-Segmentation-in-MR-Images-with-a-Kirschner-Jung/38d1204d34510481396af59eb768e6cdfcda1135 (2012). Accessed 21 Oct 2021

  7. Wallner, J., Schwaiger, M., Hochegger, K., et al.: A review on multiplatform evaluations of semi-automatic open-source based image segmentation for cranio-maxillofacial surgery. Comput. Methods Programs Biomed. 182, 105102 (2019). https://doi.org/10.1016/j.cmpb.2019.105102

    Article  Google Scholar 

  8. Dickinson, A.W.L., Abolmaesumi, P., Gobbi, D.G., Mousavi, P.: SimITK: visual programming of the ITK image-processing library within Simulink. J. Digit. Imaging 27(2), 220–230 (2014). https://doi.org/10.1007/s10278-013-9667-7

    Article  Google Scholar 

  9. Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2016, 3342–3345 (2016). https://doi.org/10.1109/EMBC.2016.7591443

    Article  Google Scholar 

  10. Yushkevich, P.A., et al.: User-guided segmentation of multi-modality medical imaging datasets with ITK-SNAP. Neuroinformatics 17(1), 83–102 (2018). https://doi.org/10.1007/s12021-018-9385-x

    Article  Google Scholar 

  11. Maldjian, J.A., Shively, C.A., Nader, M.A., Friedman, D.P., Whitlow, C.T.: Multi-atlas library for eliminating normalization failures in non-human primates. Neuroinformatics 14(2), 183–190 (2015). https://doi.org/10.1007/s12021-015-9291-4

    Article  Google Scholar 

  12. Platero, C., Tobar, M.C.: A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans. Comput. Math. Methods Med. 2014, e182909 (2014). https://doi.org/10.1155/2014/182909

    Article  MATH  Google Scholar 

  13. Yamaguchi, S., Satake, K., Yamaji, Y., et al.: Three-dimensional semiautomatic liver segmentation method for non-contrast computed tomography based on a correlation map of locoregional histogram and probabilistic atlas. Comput. Biol. Med. 55, 79–85 (2014). https://doi.org/10.1016/j.compbiomed.2014.10.003

    Article  Google Scholar 

  14. van der Palen, R.L.F., Roest, A.A.W., van den Boogaard, P.J., de Roos, A., Blom, N.A., Westenberg, J.J.M.: Scan–rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers. Magn. Reson. Mater. Phys. Biol. Med. 31(5), 653–663 (2018). https://doi.org/10.1007/s10334-018-0688-6

    Article  Google Scholar 

  15. Kalra, P.: Left Ventricle Volume Reconstruction to Minimize Scanning Time: Slice-Fitting Method. Browse Theses Diss (2015)

    Google Scholar 

  16. Chu, V., Hamarneh, G.: MATLAB-ITK interface for medical image filtering, segmentation, and registration - art. no. 61443T (2006)

    Google Scholar 

  17. Sen, Y., Qian, Y., Avolio, A., Morgan, M.: Image segmentation methods for intracranial aneurysm haemodynamic research. J. Biomech. 47, 1014–1019 (2014). https://doi.org/10.1016/j.jbiomech.2013.12.035

    Article  Google Scholar 

  18. Rosenbluth, K.H., Gimenez, F., Kells, A.P., et al.: Automated segmentation tool for brain infusions. PLoS ONE 8, e64452 (2013). https://doi.org/10.1371/journal.pone.0064452

    Article  Google Scholar 

  19. Low, D.A., Parikh, P.J., Lu, W., et al.: Novel breathing motion model for radiotherapy. Int. J. Radiat. Oncol. 63, 921–929 (2005). https://doi.org/10.1016/j.ijrobp.2005.03.070

    Article  Google Scholar 

  20. Cibis, M., Jarvis, K., Markl, M., et al.: The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics. J. Biomech. 48, 2984–2989 (2015). https://doi.org/10.1016/j.jbiomech.2015.07.039

    Article  Google Scholar 

  21. Ledesma-Carbayo, M.J., Montejo, C., Malpica, N., et al.: Quantification of blood flow in great vessels from cardiac magnetic resonance imaging. In: ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005. pp 133–135 (2005)

    Google Scholar 

  22. Han, M., Liu, Y., Wu, D., et al.: A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. Int. J. Heat Mass Transf. 111, 1–16 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.100

    Article  Google Scholar 

  23. Okhotnikov, I., Noroozi, S., Sewell, P., Godfrey, P.: Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics. Int. J. Heat Fluid Flow 64, 89–102 (2017). https://doi.org/10.1016/j.ijheatfluidflow.2017.02.005

    Article  Google Scholar 

  24. Bogaert, J., Dymarkowski, S., Taylor, A.M., Muthurangu, V. (eds.): Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

    Google Scholar 

  25. Vignaux,, O.: Imagerie Cardiaque : Scanner et IRM, 2nd edn. Elsevier Masson (2011)

    Google Scholar 

  26. Garg, P., Westenberg, J.J.M., van den Boogaard, P.J, et al.: Comparison of fast acquisition strategies in whole-heart four-dimensional flow cardiac MR: Two-center, 1.5 Tesla, phantom and in vivo validation study. J. Magn. Reson. Imaging JMRI (2017). https://doi.org/10.1002/jmri.25746

  27. Ali, S., Madabhushi, A.: Segmenting multiple overlapping objects via a hybrid active contour model incorporating shape priors: applications to digital pathology. In: International Society for Optics and Photonics, pp. 79622W (2011)

    Google Scholar 

  28. Ali, S., Madabhushi, A.: An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery. IEEE Trans. Med. Imaging 31, 1448–1460 (2012). https://doi.org/10.1109/TMI.2012.2190089

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houneida Sakly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakly, H., Said, M., Tagina, M. (2023). Medical Decision Making Based 5D Cardiac MRI Segmentation Tools. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-27440-4_7

Download citation

Publish with us

Policies and ethics