Skip to main content

Human-Centred Artificial Intelligence in Sound Perception and Music Composition

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 646))

Abstract

Previous algorithms created for the harmonization of a melody have highlighted difficulties in finding a solution that could be significant and important not only from the point of view of listening but also from that of composition, that is, also respecting the rules of musical grammar that tradition handed down to us. This article describes a model for the harmonization of melody (non-modulating) derived from common concepts in music theory (such as Schenker’s theory) applied in compliance with the rules of musical grammar. The fundamental structure is characterized by a self-learning system based: on the Markovian stochastic process, for the definition of rules both for the concatenation of the chords and for the correct melodic movement of the sounds between two consecutive chords; on the Viterbi algorithm, for identifying the correct chord for each sound of the melody. The core of the algorithm allows the sounds of each chord to follow a correct trend (ascending or descending) such as to give each of them the real decisive impulse (which every listener is able to recognize). Examples of musical fragments harmonized in this way show that the apparatus of the composition rules and that of the listening rules must be thought of as coinciding (or at least partially in possession of common elements).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirke, A., Miranda, E.R.: A survey of computer systems for expressive music performance. ACM Comput. Surv. 42(1), 1–41 (2009)

    Article  Google Scholar 

  2. Della Ventura, M.: Shaping the music perception of an automatic music composition: an empirical approach for modelling music expressiveness. In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), vol. 942. Porto, Portugal, Springer (2018)

    Google Scholar 

  3. Holand, S., Mudd, T., Wilkie-McKenna, K., McPherson, A., Wanderley, M.M.: New Direct ion in Music Human-Computer Interaction. Springer, Cham (2019)

    Google Scholar 

  4. Wanderley, M.M., Malloch, J., Garcia, J., Mackay, W.E., Beaudouin-Lafon, M.: Human computer interaction meets computer music: the MIDWAY project. In: ACM SIGCHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA 2016). San Jose, USA (2016)

    Google Scholar 

  5. Cope, D., Mayer, M.J.: Experiments in Musical Intelligence, vol. 12. AR editions Madison, Madison, WI, USA (1996)

    Google Scholar 

  6. Liang, F.T., Gotham, M.: Automatic stylistic composition of Bach chorales with deep LSTM. In: Proceedings of International Society for Music Information Retrieval Conference, pp. 449–456. ISMIR, Suzhou, China (2017)

    Google Scholar 

  7. Papadopoulos, A., Roy, P., Pachet, F.: Assisted lead sheet composition using flow composer. In: International Conference on Principles and Practice of Constraint Programming, pp. 769–785. Springer, Cham (2016)

    Chapter  Google Scholar 

  8. Huang, C.Z.A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., Howcroft, J.: Bach Doodle: approachable music composition with machine learning at scale. In: Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), pp. 793–800 (2019)

    Google Scholar 

  9. Cooper, R.: Propositions pour un module transformationnel musicale. Musique enJeu, No. 10, 70–88 (1973)

    Google Scholar 

  10. Sundberg, J., Lindblom, B.: Generative theories in language and music descriptions. Cognition 4, 99–122 (1976)

    Article  Google Scholar 

  11. Steedman, M.J.: A generative grammar for jazz chord sequences. Music Perception 2(1), 52–77 (1984)

    Article  Google Scholar 

  12. Kippen, J., Bel, B.: Computers, composition and the challenge of “new music” in modern India. Leonardo Music J. 4, 79 (1994). https://doi.org/10.2307/1513184

    Article  Google Scholar 

  13. Cope, D.: Computer modeling of musical intelligence in EMI. Comput. Music. J. 16(2), 69–83 (1992)

    Article  Google Scholar 

  14. Cope, D.: Hidden Structure: Music Analysis Using Computers. AR Editions, Inc. (2009)

    Google Scholar 

  15. West, R., Howell, P., Cross, I.: Musical structure and knowledge representation. In: Howell, P., West, R., Cross, I. (eds.) Representing Musical Structure, pp. 1–30. Academic Press, London (1991)

    Google Scholar 

  16. Khalifa, Y.M., Begovic, J., Khan, B., Wisdom, A., Al-Mourad, M.B.: Evolutionary music composer integrating formal grammar. In: Elleithy, K. (ed.) Advances and Innovations in Systems. Computing Sciences and Software Engineering. Springer, Dordrecht (2007)

    Google Scholar 

  17. Quick, D., Hudak, P.: Grammar-based automated music composition in Haskell. In: Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design (FARM), pp. 59–70 (2013)

    Google Scholar 

  18. Ventura, M.D.: Automatic music composition from a self-learning algorithm. In: Ravulakollu, K.K., Khan, M.A., Abraham, A. (eds.) Trends in Ambient Intelligent Systems. SCI, vol. 633, pp. 223–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30184-6_9

    Chapter  Google Scholar 

  19. Finkensiep, C., Widdess, R., Rohrmeier, M.: Modelling the syntax of north Indian melodies with a generalized graph grammar. In: Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), pp. 426–469 (2019)

    Google Scholar 

  20. Piana, G.: Filosofia della musica. Ed. Guerini e Associati (2013)

    Google Scholar 

  21. de la Motte, D.: Manuale di armonia, Bärenreiter (1976)

    Google Scholar 

  22. Schoenberg, A.: Theory and Harmony. Univ of California Pr; Reprint edition (1992)

    Google Scholar 

  23. Coltro, B.: Lezioni di armonia complementare. Ed. Zanibon (1997)

    Google Scholar 

  24. Giustini, M.: La teoria semplificata dell’armonia di Hugo Riemann. Ed. De Sono-Albisani (2014)

    Google Scholar 

  25. Winckel, F.: Music, Sound and Sensation. Dover, New York (1967)

    Google Scholar 

  26. Tenney, J.: A history of consonance and dissonance. Excelsior Music Publishing Company (1934)

    Google Scholar 

  27. Sethares, W.A.: Local consonance and the relationship between timbre and scale. The J. Acoust. Soci. Am. 94(3), 1218–1228 (1993)

    Article  MathSciNet  Google Scholar 

  28. Della Ventura, M.: A self-adaptive learning music composition algorithm as virtual tutor. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds.) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol. 646. Springer, Cham (2022)

    Google Scholar 

  29. Bengio, Y.: Markovian Models for Sequential Data. Neural Comput. Surv. 2, 129–162 (1999)

    Google Scholar 

  30. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inform. Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  31. Viterbi, A.: Convolutional codes and their performance in communication systems. IEEE Trans. Comm, Technol. 19(5), 751–772 (1971)

    Article  MathSciNet  Google Scholar 

  32. Omura, J.K.: On the viterbi decoding algorithm. IEEE Trans. Inform. Theory 15(1), 177–179 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Della Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Della Ventura, M. (2023). Human-Centred Artificial Intelligence in Sound Perception and Music Composition. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-27440-4_21

Download citation

Publish with us

Policies and ethics