Skip to main content

Acoustic Analysis for Vocal Fold Assessment—Challenges, Trends, and Opportunities

  • Chapter
  • First Online:
Data Science in Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1084))

  • 324 Accesses

Abstract

The goal of this study was a review of trends in non-invasive vocal fold assessment to identify the significance of acoustic analysis within the scope of proposed methods. A review protocol for selected relevant studies was developed using systematic review guidelines. A classification scheme was applied to process the selected relevant study set, data were extracted and mapped in a systematic map. A systematic map was used to synthesize data for a quantitative summary of the main research question. A tabulated summary was created to summarize supporting topics. Results show that non-invasive vocal fold assessment is influenced by general computer science trends. Machine learning techniques dominate studies and publications, i.e., 51% of the set used at least one method to detect and classify vocal fold pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henshilwood, C., d’Errico, F., Yates, R., et al.: Emergence of modern human behavior: middle stone age engravings from South Africa. Science 295, 1278–1280 (2002). https://doi.org/10.1126/science.1067575

    Article  Google Scholar 

  2. Hirano, M.: Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica 26, 89–94 (1974). https://doi.org/10.1159/000263771

    Article  Google Scholar 

  3. Ramig, L., Verdolini, K.: Treatment efficacy. J. Speech Lang. Hear. Res. (1998). https://doi.org/10.1044/jslhr.4101.s101

    Article  Google Scholar 

  4. Roy, N., Merrill, R., Thibeault, S., et al.: Prevalence of voice disorders in teachers and the general population. J. Speech Lang Hear. Res. 47, 281–293 (2004). https://doi.org/10.1044/1092-4388(2004/023)

    Article  Google Scholar 

  5. Zhang, Z.: Mechanics of human voice production and control. J. Acoust. Soc. Am. 140, 2614–2635 (2016). https://doi.org/10.1121/1.4964509

    Article  Google Scholar 

  6. Lieberman, P.: Some acoustic measures of the fundamental periodicity of normal and pathologic larynges. J. Acoust. Soc. Am. 35, 344–353 (1963). https://doi.org/10.1121/1.1918465

    Article  Google Scholar 

  7. Koike, Y.: Vowel amplitude modulations in patients with laryngeal diseases. J. Acoust. Soc. Am. 45, 839–844 (1969). https://doi.org/10.1121/1.1911554

    Article  Google Scholar 

  8. Cairns, D., Hansen, J., Riski, J.: Detection of hypernasal speech using a nonlinear operator. In: Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/iembs.1994.412058

  9. Moro-Velazquez, L., Gomez-Garcia, J., Godino-Llorente, J., et al.: Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-55271-y

    Article  Google Scholar 

  10. Franciscatto, M., Augustin, I., Lima, J., Maran, V.: Situation awareness in the speech therapy domain: a systematic mapping study. Comput. Speech Lang. 53, 92–120 (2019). https://doi.org/10.1016/j.csl.2018.08.002

    Article  Google Scholar 

  11. Rybakovas, A., Beiša, V., Strupas, K., et al.: Inverse filtering of speech signal for detection of vocal fold paralysis after thyroidectomy. Informatica 29, 91–105 (2018). https://doi.org/10.15388/informatica.2018.159

    Article  MathSciNet  Google Scholar 

  12. Kim, M., Kim, Y., Yoo, J., et al.: Regularized speaker adaptation of KL-HMM for dysarthric speech recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1581–1591 (2017). https://doi.org/10.1109/tnsre.2017.2681691

    Article  Google Scholar 

  13. Gómez-García, J., Moro-Velázquez, L., Godino-Llorente, J.: On the design of automatic voice condition analysis systems. Part I: review of concepts and an insight to the state of the art. Biomed. Signal Process. Control 51, 181–199 (2019). https://doi.org/10.1016/j.bspc.2018.12.024

  14. Kasurinen, J., Knutas, A.: Publication trends in gamification: a systematic mapping study. Comput. Sci. Rev. 27, 33–44 (2018). https://doi.org/10.1016/j.cosrev.2017.10.003

    Article  Google Scholar 

  15. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in Software Engineering, Technical Report EBSE 2007-001. Keele University and Durham University Joint Report (2007)

    Google Scholar 

  16. Nakamura, W.T., Oliveira, E.H., Conte, T.: Usability and User Experience Evaluation of Learning Management Systems—A Systematic Mapping Study. ICEIS (2017)

    Google Scholar 

  17. Kitchenham, B., Budgen, D., Pearl Brereton, O.: Using mapping studies as the basis for further research—a participant-observer case study. Inf. Softw. Technol. 53, 638–651 (2011). https://doi.org/10.1016/j.infsof.2010.12.011

    Article  Google Scholar 

  18. Kitchenham, B.A.: Procedures for Performing Systematic Reviews (2004)

    Google Scholar 

  19. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE’08), pp. 68–77. BCS Learning & Development Ltd., Swindon, GBR (2008)

    Google Scholar 

  20. Kuhrmann, M., Fernández, D., Daneva, M.: On the pragmatic design of literature studies in software engineering: an experience-based guideline. Empir. Softw. Eng. 22, 2852–2891 (2017). https://doi.org/10.1007/s10664-016-9492-y

    Article  Google Scholar 

  21. Kitchenham, B., Budgen, D., Brereton, P.: Evid.-Based Softw. Eng. Syst. Revi. (2015). https://doi.org/10.1201/b19467

    Article  Google Scholar 

  22. Martín-Martín, A., Orduna-Malea, E., Thelwall, M., Delgado Lózar E.: Google Scholar, web of science, and scopus: a systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018). https://doi.org/10.1016/j.joi.2018.09.002

  23. Linder, S., Kamath, G., Pratt, G., et al.: Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments. J. Clin. Epidemiol. 68, 412–417 (2015). https://doi.org/10.1016/j.jclinepi.2014.10.008

    Article  Google Scholar 

  24. Sayago-Heredia, J., Pérez-Castillo, R, Piattini, M.: A systematic mapping study on analysis of code repositories. Informatica 619–660

    Google Scholar 

  25. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015). https://doi.org/10.1016/j.infsof.2015.03.007

    Article  Google Scholar 

  26. Kitchenham, B., Brereton, P.: A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 55, 2049–2075 (2013). https://doi.org/10.1016/j.infsof.2013.07.010

    Article  Google Scholar 

  27. Pedreira, O., García, F., Brisaboa, N., Piattini, M.: Gamification in software engineering—a systematic mapping. Inf. Softw. Technol. 57, 157–168 (2015). https://doi.org/10.1016/j.infsof.2014.08.007

    Article  Google Scholar 

  28. Frank-Ito, D., Schulz, K., Vess, G., Witsell, D.: Changes in aerodynamics during vocal cord dysfunction. Comput. Biol. Med. 57, 116–122 (2015). https://doi.org/10.1016/j.compbiomed.2014.12.004

  29. Aneeja, G., Kadiri, S., Yegnanarayana, B.: Detection of glottal closure instants in degraded speech using single frequency filtering analysis. Interspeech 2018 (2018). https://doi.org/10.21437/interspeech.2018-1018

  30. Turkmen, H., Karsligil, M.: Advanced computing solutions for analysis of laryngeal disorders. Med. Biol. Eng. Comput. 57, 2535–2552 (2019). https://doi.org/10.1007/s11517-019-02031-9

  31. Gonzalez-Lopez, J., Gomez-Alanis, A., Martin Donas, J., et al.: Silent speech interfaces for speech restoration: a review. IEEE Access 8, 177995–178021 (2020). https://doi.org/10.1109/access.2020.3026579

    Article  Google Scholar 

  32. Baumann, B.: Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 7, 474 (2017). https://doi.org/10.3390/app7050474

    Article  Google Scholar 

  33. Erath, B., Zañartu, M., Stewart, K., et al.: A review of lumped-element models of voiced speech. Speech Commun. 55, 667–690 (2013). https://doi.org/10.1016/j.specom.2013.02.002

    Article  Google Scholar 

  34. Cveticanin, L.: Review on mathematical and mechanical models of the vocal cord. J. Appl. Math. 2012, 1–18 (2012). https://doi.org/10.1155/2012/928591

    Article  MathSciNet  MATH  Google Scholar 

  35. Jiang, W., Zheng, X., Xue, Q.: Computational modeling of fluid-structure-acoustics interaction during voice production. Front. Bioeng. Biotechnol. (2017). https://doi.org/10.3389/fbioe.2017.00007

    Article  Google Scholar 

  36. Massachusetts Eye and Ear Infirmary, Voice disorders database, version.1.03, Lincoln Park, 625 NJ: Kay Elemetrics Corp (1994)

    Google Scholar 

  37. Voice Disorders. In: Asha.org (2022). https://www.asha.org/practice-portal/clinical-topics/voice-disorders. Accessed 03 Mar. 2022

  38. Al-nasheri, A., Muhammad, G., Alsulaiman, M., et al.: An investigation of multidimensional voice program parameters in three different databases for voice pathology detection and classification. J. Voice 31, 113.e9-113.e18 (2017). https://doi.org/10.1016/j.jvoice.2016.03.019

    Article  Google Scholar 

  39. Daoudi, K., Bertrac, B.: On classification between normal and pathological voices using the MEEI-KayPENTAX database: issues and consequences. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (2014)

    Google Scholar 

  40. Woldert-Jokisz, B.: Saarbruecken Voice Database (2007)

    Google Scholar 

  41. Verikas, A., Gelzinis, A., Bacauskiene, M., et al.: Combining image, voice, and the patient’s questionnaire data to categorize laryngeal disorders. Artif. Intell. Med. 49, 43–50 (2010). https://doi.org/10.1016/j.artmed.2010.02.002

    Article  Google Scholar 

  42. Jacobson, B., Johnson, A., Grywalski, C., et al.: The voice handicap index (VHI). Am. J. Speech-Lang. Pathol. 6, 66–70 (1997). https://doi.org/10.1044/1058-0360.0603.66

    Article  Google Scholar 

  43. Wu, Y., Chen, H., Liao, Y. et al.: Modeling perceivers neural-responses using lobe-dependent convolutional neural network to improve speech emotion recognition. Interspeech 2017 (2017). https://doi.org/10.21437/interspeech.2017-562

  44. Voigt, D., Döllinger, M., Yang, A., et al.: Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods. Comput. Methods Prog. Biomed. 99, 275–288 (2010). https://doi.org/10.1016/j.cmpb.2010.01.004

    Article  Google Scholar 

  45. Rogers, D., Setlur, J., Raol, N., et al.: Evaluation of true vocal fold growth as a function of age. Otolaryngol.-Head Neck Surg. 151, 681–686 (2014). https://doi.org/10.1177/0194599814547489

    Article  Google Scholar 

  46. Lenell, C., Sandage, M., Johnson, A.: A tutorial of the effects of sex hormones on laryngeal senescence and neuromuscular response to exercise. J. Speech Lang. Hear. Res. 62, 602–610 (2019). https://doi.org/10.1044/2018_jslhr-s-18-0179

    Article  Google Scholar 

  47. Everett, C., Blasi, D., Roberts, S.: Climate, vocal folds, and tonal languages: connecting the physiological and geographic dots. Proc. Nat. Acad. Sci. 112, 1322–1327 (2015). https://doi.org/10.1073/pnas.1417413112

    Article  Google Scholar 

  48. Bhuta, T., Patrick, L., Garnett, J.: Perceptual evaluation of voice quality and its correlation with acoustic measurements. J. Voice 18, 299–304 (2004). https://doi.org/10.1016/j.jvoice.2003.12.004

    Article  Google Scholar 

  49. Childers, D., Lee, C.: Vocal quality factors: analysis, synthesis, and perception. J. Acoust. Soc. Am. 90, 2394–2410 (1991). https://doi.org/10.1121/1.402044

    Article  Google Scholar 

  50. Little, M., McSharry, P., Hunter, E., et al.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s Disease. IEEE Trans. Biomed. Eng. 56, 1015–1022 (2009). https://doi.org/10.1109/tbme.2008.2005954

    Article  Google Scholar 

  51. Orozco-Arroyave, J., Hönig, F., Arias-Londoño, J. et al.: Spectral and cepstral analyses for Parkinson’s disease detection in Spanish vowels and words. Expert Syst. 32, 688–697 (2015). https://doi.org/10.1111/exsy.12106

  52. Zhang, Y., Jiang, J., Rahn, D.: Studying vocal fold vibrations in Parkinson’s disease with a nonlinear model. Chaos: Interdiscip. J. Nonlinear Sci. 15, 033903 (2005). https://doi.org/10.1063/1.1916186

  53. Genero, M., Fernández-Saez, A., Nelson, H., et al.: Research review. J. Database Manag. 22, 46–70 (2011). https://doi.org/10.4018/jdm.2011070103

    Article  Google Scholar 

  54. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxonomy and survey. J. Softw.: Evol. Process 25, 53–95 (2011). https://doi.org/10.1002/smr.567

    Article  Google Scholar 

  55. Kagdi, H., Collard, M., Maletic, J.: A survey and taxonomy of approaches for mining software repositories in the context of software evolution. J. Softw. Maint. Evol.: Res. Pract. 19, 77–131 (2007). https://doi.org/10.1002/smr.344

    Article  Google Scholar 

  56. Cavalcanti, Y., da Mota Silveira Neto, P., Machado, I. et al.: Challenges and opportunities for software change request repositories: a systematic mapping study. J. Softw.: Evol. Process 26, 620–653 (2013). https://doi.org/10.1002/smr.1639

  57. Citation bias (2022). In: TheFreeDictionary.com. https://medical-dictionary.thefreedictionary.com/citation+bias. Accessed 1 Apr. 2022

  58. NCI Dictionary of Cancer Terms. In: National Cancer Institute (2022). https://www.cancer.gov/publications/dictionaries/cancer-terms/def/selection-bias?redirect=true. Accessed 1 Apr. 2022

  59. Mahtani, K., Spencer, E., Brassey, J., Heneghan, C.: Catalogue of bias: observer bias. BMJ Evid.-Based Med. 23, 23–24 (2018). https://doi.org/10.1136/ebmed-2017-110884

    Article  Google Scholar 

  60. Betrán, A., Say, L., Gülmezoglu, A., et al.: Effectiveness of different databases in identifying studies for systematic reviews: experience from the WHO systematic review of maternal morbidity and mortality. BMC Med. Res. Methodol. (2005). https://doi.org/10.1186/1471-2288-5-6

    Article  Google Scholar 

  61. Hojo, N., Ohsugi, Y., Ijima, Y., Kameoka, H.: DNN-SPACE: DNN-HMM-Based generative model of voice F0 contours for statistical phrase/accent command estimation. INTERSPEECH (2017)

    Google Scholar 

  62. Chavan, R.S., Ganesh, D., Sablé, S.: An Overview of Speech Recognition Using HMM (2013)

    Google Scholar 

  63. Badampudi, D., Wohlin, C., Petersen, K.: Software component decision-making: In-house, OSS, COTS or outsourcing—a systematic literature review. J. Syst. Softw. 121, 105–124 (2016). https://doi.org/10.1016/j.jss.2016.07.027

    Article  Google Scholar 

  64. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In: Proceedings of the International Workshop on Software Ecosystems (2011)

    Google Scholar 

  65. Petersen, K., Gencel, C.: Worldviews, Research methods, and their relationship to validity in empirical software engineering research. In: 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software Process and Product Measurement (2013). https://doi.org/10.1109/iwsm-mensura.2013.22

  66. OECD: The Digitalisation of Science. Technology and Innovation: Key Developments and Policies, OECD Publishing, Paris (2020). https://doi.org/10.1787/b9e4a2c0-en

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Danilovaitė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilovaitė, M., Tamulevičius, G. (2023). Acoustic Analysis for Vocal Fold Assessment—Challenges, Trends, and Opportunities. In: Dzemyda, G., Bernatavičienė, J., Kacprzyk, J. (eds) Data Science in Applications. Studies in Computational Intelligence, vol 1084. Springer, Cham. https://doi.org/10.1007/978-3-031-24453-7_8

Download citation

Publish with us

Policies and ethics