Skip to main content

Data Mining Techniques for Intrusion Detection on the Internet of Things Field

  • Conference paper
  • First Online:
International Conference on Cyber Security, Privacy and Networking (ICSPN 2022) (ICSPN 2021)

Abstract

Over the years, the Internet of Things (IoT) paradigm has acquired great importance due to various application possibilities. The need for Intrusion Detection System (IDS) arises related to the widespread of smart tools connected to each other. This paper aims to present a methodology based on data mining techniques to improve the protection of the connection in an Internet of Things application. In particular, this paper exploits machine learning techniques and Recommender Systems. The K-Nearest Neighbor method and a Context-Aware Recommender System allow the identification of attacks. A multiclassification module based on binary perceptron classifiers with a one-versus-one strategy allows the identification of the attack typology. The obtained numerical results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chettri, L., Bera, R.: A comprehensive survey on internet of things (IoT) toward 5G wireless systems. IEEE Internet Things J. 7(1) (2020). https://doi.org/10.1109/JIOT.2019.2948888

  2. Casillo, M., Colace, F., Lorusso, A., Marongiu, F., Santaniello, D.: An IoT-based system for expert user supporting to monitor, manage and protect cultural heritage buildings. In: Studies in Computational Intelligence, vol. 1030 (2022). https://doi.org/10.1007/978-3-030-96737-6_8

  3. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Google Scholar 

  4. Minoli, D., Sohraby, K., Occhiogrosso, B.: IoT considerations, requirements, and architectures for smart buildings—energy optimization and next-generation building management systems. IEEE Internet Things J. 4(1) (2017). https://doi.org/10.1109/JIOT.2017.2647881

  5. Marikyan, D., Papagiannidis, S., Alamanos, E.: A systematic review of the smart home literature: a user perspective. Technol. Forecast. Soc. Change 138 (2019). https://doi.org/10.1016/j.techfore.2018.08.015

  6. Lelli, F.: Interoperability of the time of Industry 4.0 and the internet of things. Future Internet 11(2) (2019). https://doi.org/10.3390/fi11020036

  7. Chianese, A., Piccialli, F., Jung, J.E.: The internet of cultural things: towards a smart cultural heritage (2017). https://doi.org/10.1109/SITIS.2016.83

  8. Jara, A.J., Sun, Y., Song, H., Bie, R., Genooud, D., Bocchi, Y.: Internet of things for cultural heritage of smart cities and smart regions (2015). https://doi.org/10.1109/WAINA.2015.169

  9. Ten, C.W., Manimaran, G., Liu, C.C.: Cybersecurity for critical infrastructures: attack and defense modeling. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(4) (2010). https://doi.org/10.1109/TSMCA.2010.2048028

  10. Jang-Jaccard, J., Nepal, S.: A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 80(5) (2014). https://doi.org/10.1016/j.jcss.2014.02.005

  11. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2) (2016). https://doi.org/10.1109/COMST.2015.2494502

  12. Castiglione, A., Palmieri, F., Colace, F., Lombardi, M., Santaniello, D., D’Aniello, G.: Securing the internet of vehicles through lightweight block ciphers. Pattern Recognit. Lett. 135 (2020). https://doi.org/10.1016/j.patrec.2020.04.038

  13. Aslan, O., Samet, R.: A comprehensive review on malware detection approaches. IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2019.2963724

  14. Sharma, R., Sharma, T.P., Sharma, A.K.: Detecting and preventing misbehaving intruders in the internet of vehicles. Int. J. Cloud Appl. Comput. (IJCAC) 12(1), 1–21 (2022)

    MathSciNet  Google Scholar 

  15. Ling, Z., Hao, Z.J.: An intrusion detection system based on normalized mutual information antibodies feature selection and adaptive quantum artificial immune system. Int. J. Semant. Web Inf. Syst. (IJSWIS) 18(1), 1–25 (2022)

    Google Scholar 

  16. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and classification of malware: research developments, trends and challenges. J. Netw. Comput. Appl. 153 (2020). https://doi.org/10.1016/j.jnca.2019.102526

  17. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv. 44(2) (2012). https://doi.org/10.1145/2089125.2089126

  18. Chui, K.T., et al.: Handling data heterogeneity in electricity load disaggregation via optimized complete ensemble empirical mode decomposition and wavelet packet transform. Sensors 21(9), 3133 (2021)

    Article  Google Scholar 

  19. Ling, Z., Hao, Z.J.: An intrusion detection system based on normalized mutual information antibodies feature selection and adaptive quantum artificial immune system. Int. J. Semant. Web Inf. Syst. (IJSWIS) 18(1), 1–25 (2022)

    Google Scholar 

  20. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1), 1–22 (2019). https://doi.org/10.1186/s42400-019-0038-7

    Article  Google Scholar 

  21. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in internet of things. J. Netw. Comput. Appl. 84 (2017). https://doi.org/10.1016/j.jnca.2017.02.009

  22. Lu, J., et al.: Blockchain-based secure data storage protocol for sensors in the industrial internet of things. IEEE Trans. Ind. Inform. 18(8), 5422–5431 (2021)

    Article  Google Scholar 

  23. Lokman, S.-F., Othman, A.T., Abu-Bakar, M.-H.: Intrusion detection system for automotive controller area network (CAN) bus system: a review. EURASIP J. Wireless Commun. Netw. 2019(1), 1–17 (2019). https://doi.org/10.1186/s13638-019-1484-3

    Article  Google Scholar 

  24. Hernández, G., Zamora, E., Sossa, H., Téllez, G., Furlán, F.: Hybrid neural networks for big data classification. Neurocomputing 390 (2020). https://doi.org/10.1016/j.neucom.2019.08.095

  25. Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.: Similarity-based Android malware detection using Hamming distance of static binary features. Future Gener. Comput. Syst. 105 (2020). https://doi.org/10.1016/j.future.2019.11.034

  26. Gao, X., Li, G.: A KNN model based on Manhattan distance to identify the SNARE proteins. IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.3003086

  27. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46 (2013). https://doi.org/10.1016/j.knosys.2013.03.012

  28. Ricci, F., Shapira, B., Rokach, L.: Recommender systems: introduction and challenges. In: Recommender Systems Handbook, 2nd edn. (2015). https://doi.org/10.1007/978-1-4899-7637-6_1

  29. Carbone, M., Colace, F., Lombardi, M., Marongiu, F., Santaniello, D., Valentino, C.: An adaptive learning path builder based on a context aware recommender system. In: Proceedings—Frontiers in Education Conference, FIE, vol. 2021, Oct 2021. https://doi.org/10.1109/FIE49875.2021.9637465

  30. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Mag. 32(3) (2011). https://doi.org/10.1609/aimag.v32i3.2364

  31. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1707 (1999). https://doi.org/10.1007/3-540-48157-5_29

  32. Annunziata, G., Colace, F., de Santo, M., Lemma, S., Lombardi, M.: ApPoggiomarino: a context aware app for e-citizenship. In: ICEIS 2016—Proceedings of the 18th International Conference on Enterprise Information Systems, vol. 2 (2016). https://doi.org/10.5220/0005825202730281

  33. Cvitić, I., Peraković, D., Periša, M., Gupta, B.: Ensemble machine learning approach for classification of IoT devices in smart home. Int. J. Mach. Learn. Cybern. 12(11), 3179–3202 (2021). https://doi.org/10.1007/s13042-020-01241-0

    Article  Google Scholar 

  34. Tewari, A., et al.: A lightweight mutual authentication approach for RFID tags in IoT devices. Int. J. Netw. Virt. Org. 18(2), 97–111 (2018)

    Google Scholar 

  35. Ling, Z., Hao, Z.J.: Intrusion detection using normalized mutual information feature selection and parallel quantum genetic algorithm. Int. J. Semant. Web Inf. Syst. (IJSWIS) 18(1), 1–24 (2022)

    Google Scholar 

  36. Zhou, Y., Cheng, G., Jiang, S., Dai, M.: Building an efficient intrusion detection system based on feature selection and ensemble classifier. Comput. Netw. 174 (2020). https://doi.org/10.1016/j.comnet.2020.107247

  37. Almiani, M., AbuGhazleh, A., Al-Rahayfeh, A., Atiewi, S., Razaque, A.: Deep recurrent neural network for IoT intrusion detection system. Simul. Model. Pract. Theory 101 (2020). https://doi.org/10.1016/j.simpat.2019.102031

  38. Le, K.H., Nguyen, M.H., Tran, T.D., Tran, N.D.: IMIDS: an intelligent intrusion detection system against cyber threats in IoT. Electronics (Switzerland) 11 (4) (2022). https://doi.org/10.3390/electronics11040524

  39. Colace, F., Khan, M., Lombardi, M., Santaniello, D.: A multigraph approach for supporting computer network monitoring systems. In: Advances in Intelligent Systems and Computing, vol. 1184 (2021). https://doi.org/10.1007/978-981-15-5859-7_46

  40. Gunti, P., et al.: Data mining approaches for sentiment analysis in online social networks (OSNs). In: Data Mining Approaches for Big Data and Sentiment Analysis in Social Media, pp. 116–141. IGI Global (2022)

    Google Scholar 

  41. Casillo, M., et al.: Context aware recommender systems: a novel approach based on matrix factorization and contextual bias. Electronics (Switzerland) 11(7) (2022). https://doi.org/10.3390/electronics11071003

  42. Casillo, M., Conte, D., Lombardi, M., Santaniello, D., Troiano, A., Valentino, C.: A content-based recommender system for hidden cultural heritage sites enhancing. In: Lecture Notes in Networks and Systems, vol. 217 (2022). https://doi.org/10.1007/978-981-16-2102-4_9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Valentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carratù, M., Colace, F., Lorusso, A., Pietrosanto, A., Santaniello, D., Valentino, C. (2023). Data Mining Techniques for Intrusion Detection on the Internet of Things Field. In: Nedjah, N., Martínez Pérez, G., Gupta, B.B. (eds) International Conference on Cyber Security, Privacy and Networking (ICSPN 2022). ICSPN 2021. Lecture Notes in Networks and Systems, vol 599. Springer, Cham. https://doi.org/10.1007/978-3-031-22018-0_1

Download citation

Publish with us

Policies and ethics