Skip to main content

A Gender Genetic Algorithm and Its Comparison with Conventional Genetic Algorithm

  • Conference paper
  • First Online:
Advances in Neural Computation, Machine Learning, and Cognitive Research VI (NEUROINFORMATICS 2022)

Abstract

This study presents a new variety of gender genetic algorithm (GGA). Using the example of five test optimization problems, its superiority over conventional genetic algorithm (GA) with an elitism operator is shown. The analysis of the novel GGA on multi-extreme optimization functions confirms the effectiveness of the idea of gender separation of the population. Based on the results obtained from experimental data and on their analysis, a more advanced modification of GGA is proposed, using determination of the offspring's gender based on the combination of parental chromosomes in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, C.K.H.: A review of applications of genetic algorithms in operations management. Eng. Appl. Artif. Intell. 76, 1–12 (2018). https://doi.org/10.1016/j.engappai.2018.08.011

    Article  Google Scholar 

  2. Chugreeva, G.N., et al.: Carbon dots effect on hydrogen bonds in aqueous suspensions. In: Saratov Fall Meeting 2020: Laser Physics, Photonic Technologies, and Molecular Modeling, Proc. SPIE 11846, 260–266 (2020). https://doi.org/10.1117/12.2591051

  3. Gudmundsson, M., et al.: Edge detection in medical images using a genetic algorithm. IEEE Trans. Med. Imaging 17(3), 469–474 (1998). https://doi.org/10.1109/42.712136

    Article  Google Scholar 

  4. Haznedar, B., Kalinli, A.: Training ANFIS using genetic algorithm for dynamic systems identification. Int. J. Intelli. Sys. Appl. Eng. 4(Special Issue-1), 44–47 (2016). https://doi.org/10.18201/ijisae.266053

  5. Sanchez-Velazco, J., Bullinaria, J. A.: A gendered selection strategies in genetic algorithms for optimization. In: Rossiter, J.M., Martin, T.P. (eds.) Proceedings of the UK Workshop on Computational Intelligence: UKCI-2003, pp. 217–223. University of Bristol, Bristol, UK (2003)

    Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. 13th ed. Addison-Wesley (1989)

    Google Scholar 

  7. Ramezani, F., Lotfi, S.: IAMGA: Intimate-Based Assortative Mating Genetic Algorithm. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011. LNCS, vol. 7076, pp. 240–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27172-4_30

    Chapter  Google Scholar 

  8. Zhang, M., Zhao, S., Wang, X.: A hybrid self-adaptive genetic algorithm based on sexual reproduction and baldwin effect for global optimization. In: 2009 IEEE Congress on Evolutionary Computation, pp. 3087–3094. IEEE (2009). https://doi.org/10.1109/CEC.2009.4983334

  9. Huang, F.L.: Towards the harmonious mating for genetic algorithms. Advanced Materials Research 255, 2013–2017 (2011). https://doi.org/10.4028/www.scientific.net/amr.255-260.2013

    Article  Google Scholar 

  10. Sizov, R., Simovici, D.A.: Type-Based Genetic Algorithms. In: Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds.) IDC 2019. SCI, vol. 868, pp. 170–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32258-8_19

    Chapter  Google Scholar 

  11. Drezner, T., Drezner, Z.: Gender-specific genetic algorithms. INFOR: Information Systems and Operational Research 44(2), 117–127 (2006). https://doi.org/10.1080/03155986.2006.11732744

  12. Shukla, N., Tiwari, M.K., Ceglarek, D.: Genetic-algorithms-based algorithm portfolio for inventory routing problem with stochastic demand. Int. J. Prod. Res. 51(1), 118–137 (2013). https://doi.org/10.1080/00207543.2011.653010

    Article  Google Scholar 

  13. Holzinger, A., et al.: Darwin, Lamarck, or Baldwin: Applying evolutionary algorithms to machine learning techniques. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 449–453. IEEE (2014). https://doi.org/10.1109/WI-IAT.2014.132

  14. Kowalczuk, Z., Białaszewski, T.: Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria. Eng. Optim. 50(1), 120–144 (2018). https://doi.org/10.1080/0305215X.2017.1305374

    Article  MathSciNet  Google Scholar 

  15. Drezner, Z., Drezner, T.D.: Biologically inspired parent selection in genetic algorithms. Ann. Oper. Res. 287(1), 161–183 (2019). https://doi.org/10.1007/s10479-019-03343-7

    Article  MATH  Google Scholar 

  16. https://deap.readthedocs.io/en/master/api/benchmarks.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavriil Kupriyanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kupriyanov, G., Isaev, I., Dolenko, S. (2023). A Gender Genetic Algorithm and Its Comparison with Conventional Genetic Algorithm. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research VI. NEUROINFORMATICS 2022. Studies in Computational Intelligence, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-031-19032-2_16

Download citation

Publish with us

Policies and ethics