Skip to main content

Atmospheric Envelopes and Glacial Retreat

  • Chapter
  • First Online:
Montology Palimpsest

Part of the book series: Montology ((M,volume 1))

  • 279 Accesses

Abstract

Mountains comprise complex relief roughness with various land surface conditions, and regional weather/climate and orographic landscapes, including formation of glaciers, are characterized by land–atmosphere dynamic interactions. In the first half of this chapter, we introduce important rules of atmospheric boundary layer and water cycles by means of cloud and precipitation processes over mountains, which causes unique geographical evidence in mountain areas. In the latter half, the glacier coverage, factors governing their dynamics and retreat overtime, and consequences are explored largely for the tropical mountain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alnaes, K. (1998). The snow as the centre of the Konzo universe. In: H. Osmaston, J. Tukahirwa, C. Basalirwa, and J. Nyakaana (Eds.), The Rwenzori Mountains National Park, Uganda. Proceedings of the Rwenzori Conference, Department of Geography, Makerere University, pp. 288–299.

    Google Scholar 

  • Appenzeller, C., Begert, M., Zenklusen, E., & Scherrer, S. C. (2008). Monitoring climate at Jungfraujoch in the high Swiss Alpine region. Science of the Total Environment, 391, 262–268.

    Article  CAS  Google Scholar 

  • Barros, A. P., & Lang, T. J. (2003). Monitoring the monsoon in the Himalayas: Observations in Central Nepal, June 2001. Monthly Weather Review, 131, 1408–1427.

    Article  Google Scholar 

  • Barry, R. G. (2008). Mountain weather and climate. https://doi.org/10.1017/CBO9780511754753

    Book  Google Scholar 

  • Beniston, M. (2006). Mountain weather and climate: A general overview and a focus on climate change in the Alps. Hydrolobiologia, 562, 3–16.

    Article  Google Scholar 

  • Betts, A. K., & Ball, J. H. (1996). The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research, 101, 7209–7225.

    Article  Google Scholar 

  • Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. UNEP-WCMC.

    Google Scholar 

  • Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., & Mark, B. G. (2017). Impacts of glacier recession and declining meltwater on mountain societies. Annals of the American Association of Geographers, 107(2), 350–359. https://doi.org/10.1080/24694452.2016.1243039

    Article  Google Scholar 

  • Chen, X., Añel, J. A., Su, Z., de la Torre, L., Kelder, H., et al. (2013). The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS One, 8(2), e56909. https://doi.org/10.1371/journal.pone.0056909

    Article  CAS  Google Scholar 

  • Chow, F., De Wekker, S., & Snyder, B. (Eds.). (2013). Mountain weather research and forecasting (Springer atmospheric sciences). Springer. https://doi.org/10.1007/978-94-007-4098-3_1

    Book  Google Scholar 

  • Comino, J. R. (2021). Precipitation: Earth surface responses and processes. Elsevier. 450 pp.

    Google Scholar 

  • Conway, J. P., Cullen, N. J., Spronken-Smith, R. A., & Fitzsimons, S. J. (2015). All-sky radiation over a glacier surface in the Southern Alps of New Zealand: Characterizing cloud effects on incoming shortwave, longwave and net radiation. International Journal of Climatology, 35, 699–713. https://doi.org/10.1002/joc.4014

    Article  Google Scholar 

  • Crockford, R. H., & Richardson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrological Processes, 14, 2903–2920.

    Article  Google Scholar 

  • Cullen, N. J., Mölg, T., Kaser, G., Hussein, K., Steffen, K., & Hardy, D. R. (2006). Kilimanjaro Glaciers: Recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophysical Research Letters, 33(16), L16502. https://doi.org/10.1029/2006GL027084

    Google Scholar 

  • Doughty A. M., Kelly, M. A., Russell, J. M., Jackson, B. M., Chipman, A. J., Nakileza, B., & Dee, S. G. (2020). Modeling glacier extents and equilibrium line altitudes in the Rwenzori Mountains, Uganda, over the last 31,000 yr. The Geological Society of America. Special Paper 548.

    Google Scholar 

  • Egger, J., Bajrachaya, S., Egger, U., Heinrich, R., Reuder, J., Shayka, P., et al. (2000). Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Monthly Weather Review, 128(4), 1106–1122. https://doi.org/10.1175/1520-0493(2000)128<1106:DWITHK>2.0.CO;2

  • Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., & Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Agricultural and Forest Meteorology, 43, 51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002

    Article  Google Scholar 

  • Franquist, E., McGlone, D., & Vuille, M. (2011). Climate change and tropical Andean glacier retreat. A report commissioned by UNESCO-IHP. http://www.unesco.org/FIELD/Santiago/pdf

  • Fujinami, H., Sato, T., Kanamori, H., & Murata, F. (2016). Contrasting features of monsoon precipitation around the Meghalaya Plateau under westerly and easterly regimes. Journal of Geophysical Research: Atmospheres, 122, 9591–9610. https://doi.org/10.1002/2016JD026116

    Article  Google Scholar 

  • Groos, A. R., Akçar, N., Yesilyurt, S., Miehe, G., Vockenhuber, C., & Veit, H. (2021). Nonuniform Late Pleistocene glacier fluctuations in tropical Eastern Africa. Science Advances, 7, https://doi.org/10.1126/sciadv.abb6826

  • He, Y., Tian, W., Huang, J., Wang, G., Yu, R., Yan, H., Yu, H., Guan, X., & Hu, H. (2021). The mechanism of increasing summer water vapor over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 126, e2020JD034166. https://doi.org/10.1029/2020JD034166

    Article  Google Scholar 

  • Hobbies, J. E. (2003). Scientific accomplishment of the long-term ecological research program: An introduction. Bioscience, 53, 17–20. https://doi.org/10.1641/0006-3568

    Article  Google Scholar 

  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95, 701–722.

    Article  Google Scholar 

  • Houze, R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(1), RG1001. https://doi.org/10.1029/2011RG000365

    Google Scholar 

  • Imaizumi, F., Nishii, R., Ueno, K., & Kurobe, K. (2019). Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment. Hydrology and Earth System Sciences, 23, 155–170. https://doi.org/10.5194/hess-23-155-2019

    Article  Google Scholar 

  • Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., et al. (2019). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364–369.

    Article  Google Scholar 

  • Isono, J., & Ueno, K. (2015). Diurnal variations of surface wind speed observed in the mountainous area of Central Japan during sunny summer days. Journal of the Meteorological Society of Japan, 93, 61–71. https://doi.org/10.2151/jmsj.2015-103

    Article  Google Scholar 

  • Jackson, M. S., Kelly, M. A., Russell, J. M., Doughty, A. M., Howley, J. A., Chipman, J. W., Cavagnaro, D., Nakileza, B., & Zimmerman, S. R. H. (2020). High-latitude warming initiated the onset of the last deglaciation in the tropics. Science Advances, 5, eaaw2610.

    Article  Google Scholar 

  • Jomelli, V., Favier, V., Rabatel, A., Brunstein, D., Hoffmann, G., & Francou, B. (2009). Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(2009), 269–282.

    Article  Google Scholar 

  • Kaser, G. & Osmaston, H. A. (2002). Tropical Glaciers. Cambridge University Press.

    Google Scholar 

  • Kato, T. (2020). Quasi-stationary band-shaped precipitation systems, named “Senjo-kousuitai,” causing localized heavy rainfalls in Japan. Journal of the Meteorological Society of Japan, 98, 485–509.

    Google Scholar 

  • Kawase, H., Yamazaki, T., Sugimoto, S., Sasai, T., Ito, R., Hamada, T., Kuribayashi, M., Fujita, M., Murata, A., Nosaka, M., & Sasaki, H. (2020). Changes in extremely heavy and light snow-cover winters due to global warming over high mountainous areas in Central Japan. Progress in Earth and Planetary Science, 7, 10.

    Article  Google Scholar 

  • Keifer, M. T., & Zhong, S. (2013). The effect of sidewall forest canopies on the formation of cold-air pools: A numerical study. Journal of Geophysical Research: Atmospheres, 118, 5965–5978.

    Article  Google Scholar 

  • Kelly, M. A., Russell, J. M., Baber, J. M., Howley, J. A., Loomis, S. E., Zimmerman, S., Nakileza, B., & Lukaye, J. (2014). Expanded glaciers during a dry and cold Last Glacial Maximum in equatorial East Africa. Geology, 42(6), 519–522. https://doi.org/10.1130/G35421.1

    Google Scholar 

  • Kitoh, A. (2004). Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere-ocean GCM. Journal of Climate, 17(4), 783–802.

    Article  Google Scholar 

  • Kobayashi, Y., & Ueno, K. (2021). The genesis tendency for a sea of clouds to occur at night in the Japanese Alps region derived by surface observation and satellite data. Tenki, 68, 3–21. (in Japanese with English abstract).

    Google Scholar 

  • Koike, T. (2004). The coordinated enhanced observing period – An initial step for integrated global water cycle observation. WMO Bulletin, 53, 2–8.

    Google Scholar 

  • Koster, R. D., et al. (2004). Science, 305, 1138–1140.

    Article  CAS  Google Scholar 

  • Kusunoki, K., & Ueno, K. (2022). Development of a nocturnal temperature inversion in a small basin associated with leaf area ratio changes on the mountain slopes in Central Japan. Journal of the Meteorological Society of Japan. Ser. II 2022-047. https://doi.org/10.2151/jmsj.2022-047

    Google Scholar 

  • Kuwagata, T., & Kimura, F. (1997). Daytime boundary layer evolution in a deep valley. Part II. Numerical simulation of the cross-valley circulation. Journal of Applied Meteorology and Climatology, 36, 883–895.

    Article  Google Scholar 

  • Mapes, B. E., Warner, T. T., & Xu, M. (2002). Diurnal patterns of rainfall on northwestern South America. Part III Diurnal gravity waves and nocturnal convection offshore. Monthly Weather Review, 131, 830–844.

    Article  Google Scholar 

  • Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., & MacDonell, S. (2020). A review of the current state and recent changes of the Andean cryosphere. Frontiers in Earth Science, 8, 99. https://doi.org/10.3389/feart.2020.00099

    Article  Google Scholar 

  • Mencuccini, M., Grace, J., Moncrieff, J., & McNaughton, K. G. (Eds.). (2004). Forests at the land-atmosphere interface.

    Google Scholar 

  • Meybeck, M., Green, P., & Vörösmarty, C. (2001). A new typology for mountains and other relief classes. Mountain Research and Development, 21, 34–45.

    Article  Google Scholar 

  • Meyfroidt, P., & Lambin, E. F. (2011). Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36, 343–371.

    Article  Google Scholar 

  • Minder, J. R., Letcher, T. W., & McKenzie Skiles, S. (2016). An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback. Journal of Geophysical Research: Atmospheres, 212, 9069–9088.

    Article  Google Scholar 

  • Mölg, T., Georges, C., & Kaser, G. (2003). The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori glaciers, East Africa, during the 20th century. International Journal of Climatology, 23, 291–303. https://doi.org/10.1002/joc.877. Published online in Wiley InterScience (www.interscience.wiley.com).

    Article  Google Scholar 

  • Mölg, T., Cullen, N. J., Hardy, D. R., Winkler, M., & Kaser, G. (2009). Quantifying climate change in the tropical midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro. Journal of Climate, 22(15), 4162–4181. https://doi.org/10.1175/2009JCLI2954.1

    Google Scholar 

  • Molg, T., Cullen, N. J., Hardy, D. R., & Kaser, G. (2013). East African glacier loss and climate change: Corrections to the UNEP article “Africa without ice and snow”. https://doi.org/10.1016/j.envdev.2013.02.001

  • Mott, R., Vionnet, V., & Grünewald, T. (2018). The seasonal snow cover dynamics: Review on wind-driven coupling processes. Frontiers in Earth Science, 6, 197. https://doi.org/10.3389/feart.2018.00197

    Article  Google Scholar 

  • Nomoto, S., & Yokoyama, S. (2020). Fog and people in Xishuangbanna, Yunnan Province, China. In S. Yokoyama, J. Matsumoto, & H. Araki (Eds.), Nature, culture, and food in monsoon Asia. International perspectives in geography (AJG Library) (Vol. 10). Springer. https://doi.org/10.1007/978-981-15-2113-3_4

    Chapter  Google Scholar 

  • Okamoto, S., & Tanimoto, H. (2016). A review of atmospheric chemistry observations at mountain sites. Progress in Earth and Planetary Science, 3, 34. https://doi.org/10.1186/s40645-016-0109-2

    Article  Google Scholar 

  • Orlove, B., Wiegandt, E., & Luckman, B. H. (2008). The place of glaciers in natural and cultural landscapes. Glaciers in Science and Society.

    Google Scholar 

  • Pepin, N. C., Duane, W. J., & Hardy, D. R. (2010). The mountain circulation on Kilimanjaro, Tanzania and its relevance for the summit ice fields: Comparison of surface mountain climate with equivalent reanalysis parameters. Global and Planetary Change, 74, 61–75.

    Article  Google Scholar 

  • Pepin, N. C., Duane, W. J., Schaefer, M., Pike, G., & Hardy, D. R. (2014). Measuring and modeling the retreat of the summit ice fields on Kilimanjaro. East Africa, Arctic, Antarctic, and Alpine Research, 46(4), 905–917. https://doi.org/10.1657/1938-4246-46.4.905

    Article  Google Scholar 

  • Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., & Adler, C. (2022). Climate Changes and Their Elevational Patterns in the Mountains of the World. Reviews of Geophysics, 60(1). https://doi.org/10.1029/2020RG000730

    Google Scholar 

  • Pitman, A. J. (2013). Review: The evolution of, and revolution in, land surface schemes designated for climate models. International Journal of Climatology, 23, 479–510.

    Article  Google Scholar 

  • Prinz, R., Heller, A., Ladner, M., Nicholson, L., & Kaser, G. (2018). Mapping the loss of Mt. Kenya’s Glaciers: An example of the challenges of satellite monitoring of very small glaciers. Geosciences, 8(5), 174. https://doi.org/10.3390/geosciences8050174

    Google Scholar 

  • Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65-66, 31–47.

    Article  Google Scholar 

  • Saitoh, T. M., Nagai, S., Yoshino, J., Kondo, H., Tamagawa, I., & Muraoka, H. (2015). Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. Ecological Research, 30, 267–277. https://doi.org/10.1007/s11284-014-1229-z

    Article  Google Scholar 

  • Sarmiento, F. O., & Kooperman, G. (2019). A socio-hydrological perspective on recent and future precipitation changes over tropical montane cloud forests in the Andes. Frontiers in Earth Sciences, 7, Article 324. https://doi.org/10.3389/feart.2019.00324

    Article  Google Scholar 

  • Sato, T. (2009). Influence of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: Insights from regional climate modeling. Quaternary International, 194, 148–158.

    Article  Google Scholar 

  • Sato, T., Kimura, F., & Hasegawa, A. S. (2007). Vegetation and topographic control of cloud activities over arid/semiarid Asia. Journal of Geophysical Research: Atmospheres, 112, D24109.

    Article  Google Scholar 

  • Satomura, T. (2000). Diurnal variation of precipitation over the Indo-China Peninsula: Two-dimensional numerical simulation. Journal of the Meteorological Society of Japan, 78, 461–475.

    Google Scholar 

  • Seehaus, T., Malz, P., Sommer, C., Lippl, S., Cochachin, A., & Braun, M. (2019). Changes of the tropical glaciers throughout Peru between 2000 and 2016 – Mass balance and area fluctuations. The Cryosphere, 13, 2537–2556. https://doi.org/10.5194/tc-13-2537-2019

    Article  Google Scholar 

  • Serafin, S., Adler, B., Cuxart, J., De, S. F. J., Wekker, A., Gohm, B., Grisogono, N. K., Kirshbaum, D. J., Rotach, M. W., Schmidli, J., Stiperski, I., Veˇcenaj, Ž., & Zardi, D. (2018). Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 9, 1–32.

    Article  Google Scholar 

  • Singh, P., Spitzbart, G., Hübl, H., & Weinmeister, H. W. (1997). Hydrological response of snowpack under rain-on-snow events: A field study. Journal of Hydrology, 202, 1–20.

    Article  Google Scholar 

  • Smith, R. B. (1984). A theory of Lee Cyclogenesis. Journal of the Atmospheric Sciences, 41(7), 1159–1168. https://doi.org/10.1175/1520-0469(1984)041<1159:ATOLC>2.0.CO;2

    Google Scholar 

  • Steenburgh, W. J., & Nakai, S. (2020). Perspectives on sea- and lake-effect precipitation from Japan’s “Gosetsu Chitai”. Bulletin of the American Meteorological Society, 101, E58–E72.

    Article  Google Scholar 

  • Su, Z., Ma, Y., Chen, X., Dong, X., Du, J., Han, C., He, Y., Hofste, J. G., Li, M., Li, M., Lv, S., Ma, W., Polo, M. J., Peng, J., Qian, H., Sobrino, J., van der Velde, R., Wen, J., Wang, B., Wang, X., Yu, L., Zhang, P., Zhao, H., Zheng, H., Zheng, D., Zhong, L., & Zeng, Y. (2021). Monitoring water and energy cycles at climate scale in the third pole environment (CLIMATE-TPE). Remote Sensing, 13(18), 3661. https://doi.org/10.3390/rs13183661

    Google Scholar 

  • Sugimoto, S., & Ueno, K. (2010). Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. Journal of Geophysical Research: Atmospheres, 115, D16105. https://doi.org/10.1029/2009JD013609

    Article  Google Scholar 

  • Sugimoto, S. K., Ueno, H., Fujinami, T., Nasuno, T. S., & Takahashi, H. G. (2021). Cloud-resolving-model simulations of nocturnal precipitation over the Himalayan slopes and foothills. Journal of Hydrometeorology, 22, 3171–3188.

    Article  Google Scholar 

  • Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.-L. (2018). A review of global precipitation data sets: Data sources, estimation, and inter-comparisons. Reviews of Geophysics, 56, 79–107. https://doi.org/10.1002/2017RG000574

    Article  Google Scholar 

  • Takeuchi, K., Brown, R. D., Washitani, I., Tsunekawa, A., & Yokohari, M. (Eds.). (2002). Satoyama: The traditional rural landscape of Japan. Springer.

    Google Scholar 

  • Taylor, R. G., Mileham, L., Tindimugaya, C., Majugu, A., Muwanga, A., & Nakileza, B. (2006). Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophysical Research Letters, 33, L10402. https://doi.org/10.1029/2006GL025962

    Article  Google Scholar 

  • Thompson, L. G., Brecher, H. H., Mosley-Thompson, E., & Hardy, D. R. (2009) Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences of the United States of America, 106 ,19770–19775.

    Google Scholar 

  • Veettil, K. (2019). Global disappearance of Tropical Mountain Glaciers: Observations causes and challenges. Geosciences, 9(5), 196. https://doi.org/10.3390/geosciences9050196

    Google Scholar 

  • Ueno, K., & Yamada, H. (2018). Modulation of diurnal precipitation occurrences observed in the Tibetan Plateau during monsoon season of 1998. Tsukuba Geoenvironmental Sciences, 14, 9–18.

    Google Scholar 

  • Ueno, K., Sugimoto, S., Tsutsui, H., Taniguchi, K., Hu, Z., & Wu, S. (2012). Role of patchy snow cover on the planetary boundary layer structure during late winter observed in the central Tibetan Plateau. Journal of the Meteorological Society of Japan, 90C, 145–155. https://doi.org/10.2151/jmsj.2012-C10

    Article  Google Scholar 

  • UGRH. (2014). Inventario de glaciares del Peru. Available at: http://ponce. sdsu.edu/INVENTARIO_GLACIARES_ANA.pdf (last access: 24 September 2019).

    Google Scholar 

  • Wang, S.-J., & Zhou, L.-Y. (2019). Integrated impacts of climate change on glacier tourism. Advances in Climate Change Research, 10(2019), 71–79.

    Article  Google Scholar 

  • Wang, B., Bao, Q., Hoskins, B., Wu, G., & Liu, Y. (2008). Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 35, L14702.

    Article  Google Scholar 

  • Wang, X., Tolksdorf, V., Otto, M., & Scherer, D. (2021). WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. International Journal of Climatology, 41, 743–762.

    Article  Google Scholar 

  • Whiteman, C. (2000). Mountain meteorology: Fundamentals and applications. Oxford University Press.

    Book  Google Scholar 

  • Xie, S.-P., Xu, H., Saji, N. H., Wang, Y., & Liu, W. T. (2006). Role of narrow mountains in large-scale organization of Asian monsoon convection. Journal of Climate, 19, 3420–3429.

    Article  Google Scholar 

  • Yamada, H., & Uyeda, H. (2006). Transition of the rainfall characteristics related to the moistening of the land surface over the central Tibetan Plateau during the summer of 1998. Monthly Weather Review, 134, 3230–3247.

    Article  Google Scholar 

  • Yang, K., Ye, B., Zhou, D., Wu, B., Foken, T., Qin, J., & Zhou, Z. (2011). Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climate Change, 109, 517–534.

    Article  Google Scholar 

  • Young, J. A. T., & Hastenrath, S. (1987). Glaciers of the Middle East and Africa-Glaciers of Africa. In: Satellite image atlas of glaciers of the World. U.S. Geological Survey Professional Paper 1386-G-3.

    Google Scholar 

  • Zhang, Y., Ohata, T., & Kadota, T. (2003). Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. Journal of Hydrology, 283, 41–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ueno, K., Nakileza, B. (2022). Atmospheric Envelopes and Glacial Retreat. In: Sarmiento, F.O. (eds) Montology Palimpsest. Montology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-13298-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13298-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13297-1

  • Online ISBN: 978-3-031-13298-8

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics