Skip to main content

Laplacian Pyramid-like Autoencoder

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Included in the following conference series:

Abstract

In this paper, we develop the Laplacian pyramid-like autoencoder (LPAE) by adding the Laplacian pyramid (LP) concept widely used to analyze images in Signal Processing. LPAE decomposes an image into the approximation image and the detail image in the encoder part and then tries to reconstruct the original image in the decoder part using the two components. We use LPAE for experiments on classifications and super-resolution areas. Using the detail image and the smaller-sized approximation image as inputs of a classification network, our LPAE makes the model lighter. Moreover, we show that the performance of the connected classification networks has remained substantially high. In a super-resolution area, we show that the decoder part gets a high-quality reconstruction image by setting to resemble the structure of LP. Consequently, LPAE improves the original results by combining the decoder part of the autoencoder and the super-resolution network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  2. Anwar, S., Barnes, N.: Densely Residual Laplacian Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1192–1204 (2022)

    Article  Google Scholar 

  3. Ardakani, A., Condo, C., Ahmadi, M., Gross, W.J.: An Architecture to Accelerate Convolution in Deep Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1349–1362 (2018)

    Article  Google Scholar 

  4. Bevilacqua, M., Roumy, A., Guillemot, C., line Alberi Morel, M.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1-135.10. BMVA Press (2012), ISBN 1-901725-46-4

    Google Scholar 

  5. Burt, P. J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. In: Readings in Computer Vision, pp. 671–679 (1987)

    Google Scholar 

  6. Chen, T., Lin, L., Zuo, W., Luo, X., Zhang, L.: Learning a wavelet-like auto-encoder to accelerate deep neural networks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 6722–6729 (2018)

    Google Scholar 

  7. Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. In: 2020 25th International Conference on Pattern Recognition, ICPR, pp. 59–64 (2021)

    Google Scholar 

  8. Dai, T., Cai, J., Zhang, Y., Xia, S.-T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 11065–11074 (2019)

    Google Scholar 

  9. Do, M.N., Vetterli, M.: Framing Pyramids. IEEE Trans. Signal Process. 51(9), 2329–2342 (2003)

    Article  MathSciNet  Google Scholar 

  10. Doersch, C.: Tutorial on Variational Autoencoders (2021). arXiv:1606.05908

  11. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1604–1613 (2019)

    Google Scholar 

  12. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for single image super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4323–4337 (2021)

    Google Scholar 

  13. Huang, F., Zhang, J., Zhou, C., Wang, Y., Huang, J., Zhu, L.: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 17(1), 217–229 (2020). https://doi.org/10.1007/s10346-019-01274-9

    Article  Google Scholar 

  14. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNet: a wavelet-based cnn for multi-scale face super resolution. In: Proceedings of the 2017 IEEE International Conference on Computer Vision, ICCV, pp. 1689–1697 (2017)

    Google Scholar 

  15. Huang, Y., Xu, Q.: Electricity theft detection based on stacked sparse denoising autoencoder. Int. J. Electr. Power Energy Syst. 125, 106448 (2021)

    Google Scholar 

  16. Imani, M., Garcia, R., Gupta, S., Rosing, T.: Hardware-software co-design to accelerate neural network applications. ACM J. Emer. Technol. Comput. Syst. 15(21), 1–18 (2019)

    Google Scholar 

  17. Islam, Z., Abdel-Aty, M., Cai, Q., Yuan, J.: Crash data augmentation using variational autoencoder. Accid. Anal. Prev. 151(1), 105950 (2021)

    Google Scholar 

  18. Kaggle (Photo by Jan Bottinger on Unsplash). Intel Image Classification (2018). https://www.kaggle.com/puneet6060/intel-image-classification

  19. Kim, J. Lee, J. K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1646–1654 (2016)

    Google Scholar 

  20. Kong, X., Zhao, H., Qiao, Y., Dong, C.: ClassSR: a general framework to accelerate super-resolution networks by data characteristic. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 12016–12025 (2021)

    Google Scholar 

  21. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a Laplacian pyramid translation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 9392–9400 (2021)

    Google Scholar 

  22. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, pp. 136–144 (2017)

    Google Scholar 

  23. Lin, T., et al.: Drafting and revision: Laplacian pyramid network for fast high-quality artistic style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 5141–5150 (2021)

    Google Scholar 

  24. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, pp. 773–782 (2018)

    Google Scholar 

  25. Liu, Y., Agarwal, S., Venkataraman, S.: AutoFreeze: automatically freezing model blocks to accelerate fine-tuning (2021). arXiv:2102.01386

  26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision, ICCV (2015)

    Google Scholar 

  27. Liu, Z.-S., Siu, W.-C., Wang, L.-W.: Variational autoencoder for reference based image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Workshops, pp. 516–525 (2021)

    Google Scholar 

  28. Liu, Z.-S., Wang, L.-W., Li, C.-T., Siu, W.-C.: Hierarchical back projection network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops (2019a)

    Google Scholar 

  29. Liu, Z.-S., Wang, L.-W., Li, C.-T., Siu, W.-C., Chan, Y.-L.: image super-resolution via attention based back projection networks. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop, ICCVW, pp. 3517–3525 (2019b)

    Google Scholar 

  30. Mahmoud, M., et al.: TensorDash: exploiting sparsity to accelerate deep neural network training. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, pp. 781–795 (2020)

    Google Scholar 

  31. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2016). arXiv:1511.05644

  32. Mataev, G., Milanfar, P., Elad, M.: DeepRED: deep image prior powered by RED. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV (2019)

    Google Scholar 

  33. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  34. Sun, W., Chen, Z.: Learned image downscaling for upscaling using content adaptive resampler. IEEE Trans. Image Process. 29, 4027–4040 (2020)

    Article  Google Scholar 

  35. Timofte, R., Agustsson, E., Gool, L.V., Yang, M.-H., Zhang, L., Lim, B., et al.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops (2017)

    Google Scholar 

  36. Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder (2021). arXiv:2007.03898

  37. Wang, J., Duan, Y., Tao, X., Xu, M., Lu, J.: Semantic perceptual image compression with a Laplacian pyramid of convolutional networks. IEEE Trans. Image Process. 30, 4225–4237 (2021)

    Article  Google Scholar 

  38. Yang, W., Wang, W., Zhang, X., Sun, S., Liao, Q.: Lightweight Feature Fusion Network for Single Image Super-Resolution. IEEE Signal Process. Lett. 26(4), 538–542 (2019)

    Article  Google Scholar 

  39. Yapıcı, M.M., Tekerek, A., Topaloglu, N.: Performance comparison of convolutional neural network models on GPU. In: 2019 IEEE 13th International Conference on Application of Information and Communication Technologies, AICT, pp. 1–4 (2019)

    Google Scholar 

  40. Zhang, J., Wang, Z., Zheng, Y., Zhang, G.: Cascaded convolutional neural network for image super-resolution. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds.) ICAIS 2021. CCIS, vol. 1422, pp. 361–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78615-1_32

    Chapter  Google Scholar 

  41. Zhang, J., Yu, H.-F., Dhillon, I.S.: AutoAssist: a framework to accelerate training of deep neural networks. In: NIPS 2019: Proceedings of the 33rd International Conference on Neural Information Processing Systems, vol. 539, pp. 5998–6008 (2019)

    Google Scholar 

  42. Zhang, W., Jiao, L., Li, Y., Huang, Z., Wang, H.: Laplacian feature pyramid network for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)

    Article  Google Scholar 

  43. Zhang, X., Song, H., Zhang, K., Qiao, J., Liu, Q.: Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning. Neurocomputing 398, 531–538 (2020)

    Article  Google Scholar 

  44. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

T. Hur—This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2021-0-00023, Developing a lightweight Korean text detection and recognition technology for complex disaster situations).

Y. Hur—This work was supported in part by National Research Foundation of Korea (NRF) [Grant Numbers 2015R1A5A1009350 and 2021R1A2C1007598], and by the ‘Ministry of Science and ICT’ and NIPA via “HPC Support” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmi Hur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, S., Hur, T., Hur, Y. (2022). Laplacian Pyramid-like Autoencoder. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_5

Download citation

Publish with us

Policies and ethics