Skip to main content

Causal Probabilistic Based Variational Autoencoders Capable of Handling Noisy Inputs Using Fuzzy Logic Rules

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 507))

Included in the following conference series:

Abstract

Researchers and engineers may use inferential logic and/or fuzzy logic to solve real-world causal problems. Inferential logic uses probability theories, while fuzzy logic uses its membership functions and set theories to process uncertainty and fuzziness of the events. To benefit from both logics, some researchers in the past tried to create probabilistic fuzzy logic (PFL). Deep Learning algorithms (DLs) with their incredible achievements such as very high precision results in some specific tasks are at the center of the weak AI. However, DLs fail when it comes to causal reasoning. In order to equip Deep Learning algorithms (DLs) with reasoning capabilities, one solution would be to integrate non-classical logics such as PFL with DLs. In this paper, we will demonstrate the first step toward creating a deep causal probabilistic fuzzy logic architecture capable of reasoning with missing or noisy datasets. To do so, the architecture uses fuzzy theories, probabilistic theories, and deep learning algorithms such as causal effect variational autoencoders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/AMLab-Amsterdam/CEVAE.

  2. 2.

    https://github.com/pyro-ppl/pyro.

  3. 3.

    If the true parameters of a statistical model can be learned after observing sufficient number of observations, the model is said to be identifiable. Wikipedia.

  4. 4.

    https://microsoft.github.io/dowhy/dowhy_ihdp_data_example.html.

  5. 5.

    https://github.com/joseffaghihi/Causal-fuzzy-CEVAE/blob/main/2021-12-14/Arch2/ARC2_Final_2021_12_14.ipynb.

  6. 6.

    https://github.com/joseffaghihi/Causal-fuzzy-CEVAE/blob/main/2021-12-14/Arch2/ARC2_Final_2021_12_14.ipynb.

References

  1. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  2. Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. In: Advances in Neural Information Processing Systems, p. 6446–6456 (2017)

    Google Scholar 

  3. Faghihi, U., Robert, S., Poirier, P., Barkaoui, Y.: From association to reasoning, an alternative to pearl’s causal reasoning. In: Proceedings of AAAI-FLAIRS 2020. North-Miami-Beach (Florida) (2020)

    Google Scholar 

  4. Faghihi, U., Maldonado-Bouchard, S., Biskri, I.: Science of data: from correlation to causation. Springer (2021)

    Google Scholar 

  5. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  6. Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. Adv. Neural Inform. Process. Syst. 31 (2018)

    Google Scholar 

  7. Guo, R., Cheng, L., Li, J., Hahn, P.R., Liu, H.: A survey of learning causality with data: problems and methods. ACM Comput. Surv. (CSUR) 53(4), 1–37 (2020)

    Article  Google Scholar 

  8. Roeder, G., Metz, L., Kingma, D.: On linear identifiability of learned representations. In: International Conference on Machine Learning. PMLR (2021)

    Google Scholar 

  9. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20(1), 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regression trees. Ann. Appl. Stat. 4(1), 266–298 (2010)

    Article  MathSciNet  Google Scholar 

  11. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning. PMLR (2017)

    Google Scholar 

  12. Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders and nonlinear ica: A unifying framework. In: International Conference on Artificial Intelligence and Statistics, p. 2207–2217. PMLR (2020)

    Google Scholar 

  13. Wu, P., Fukumizu, K.: Intact-VAE: estimating treatment effects under unobserved confounding. arXiv preprint arXiv:2101.06662 (2021)

  14. Yager, R.R., Zadeh, L.A.: An introduction to fuzzy logic applications in intelligent systems, vol. 165. Springer Science & Business Media (2012)

    Google Scholar 

  15. Zhao, D.-M., Wang, J.-H., Wu, J., Ma, J.-F.: Using fuzzy logic and entropy theory to risk assessment of the information security. In: 2005 International Conference on Machine Learning and Cybernetics. IEEE (2005)

    Google Scholar 

  16. Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy multi-level security: An experiment on quantified risk-adaptive access control. In: 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE (2007)

    Google Scholar 

  17. Saki, A., Faghihi, U.: Fuzzy Rule Based Probability Theory (IN PREPARATION) (2022)

    Google Scholar 

  18. Ng, A.: O’Reilly, and Associates, AI is the New Electricity. O’Reilly Media (2018)

    Google Scholar 

  19. Sharma, A., Kiciman, E.: DoWhy: An end-to-end library for causal inference. arXiv preprint arXiv:2011.04216 (2020)

  20. Robert, S., Faghihi, U., Barkaoui, Y., Ghazzali, N.: Causality in probabilistic fuzzy logic and alternative causes as fuzzy duals. In: Hernes, M., Wojtkiewicz, K., Szczerbicki, E. (eds.) ICCCI 2020. CCIS, vol. 1287, pp. 767–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63119-2_62

    Chapter  Google Scholar 

  21. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491 (2015)

    Google Scholar 

  22. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  23. Tayebi, T., Zahrani, S.T., Mohammadpour, R.: Relationship between adequacy of prenatal care utilization index and pregnancy outcomes. Iran. J. Nurs. Midwifery Res. 18(5), 360 (2013)

    Google Scholar 

  24. Herrera, J., Chaudhuri, G., López-Jaramillo, P.: Is infection a major risk factor for preeclampsia? Med. Hypotheses 57(3), 393–397 (2001)

    Article  Google Scholar 

  25. Nicolaides, K.H.: Turning the pyramid of prenatal care. Fetal Diagn. Ther. 29(3), 183–196 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sioui Maldonado Bouchard for kindly proofreading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usef Faghihi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faghihi, U., Kalantarpour, C., Saki, A. (2022). Causal Probabilistic Based Variational Autoencoders Capable of Handling Noisy Inputs Using Fuzzy Logic Rules. In: Arai, K. (eds) Intelligent Computing. SAI 2022. Lecture Notes in Networks and Systems, vol 507. Springer, Cham. https://doi.org/10.1007/978-3-031-10464-0_12

Download citation

Publish with us

Policies and ethics