Skip to main content

Comparative Analysis of Machine Learning Methods for Assessing the Predictive Potential of Risk Factors for the Development of Cardiovascular Diseases

  • Conference paper
  • First Online:
Artificial Intelligence Trends in Systems (CSOC 2022)

Abstract

The powerful development of modern technologies of laboratory diagnostics, including molecular diagnostics, offers a fairly large number of parameters for assessing the state of the body, the interpretation of which is difficult for doctors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenland, P., Alpert, J.S., Beller, G.A., Benjamin, E.J., Budoff, M.J., Fayad, Z.A., et al.: 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a re-port of the American college of cardiology foundation/American heart association task force on practice guidelines developed in collaboration with the American society of echocardiography, American society of nuclear cardiology, Society of atherosclerosis imaging and prevention, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and society for cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 56(25), e50–e103 (2010). https://doi.org/10.1161/CIR.0b013e3182051b4c

    Article  Google Scholar 

  2. Sjostrom, L., Lindroos, A.K., Peltonen, M., Torgerson, J., Bouchard, C., Carlsson, B., et al.: Life-style, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 351(26), 2683–2693 (2004). https://doi.org/10.1056/NEJMoa035622

    Article  Google Scholar 

  3. Goldstein, B.A., Navar, A.M., Carter, R.E.: Moving beyond regression techniques in cardio-vascular risk prediction: applying machine learning to address analytic challenges. Eur. Heart J. 38, 1805–1814 (2017). https://doi.org/10.1093/eurheartj/ehw302

    Article  Google Scholar 

  4. Piepoli, M.F., Hoes, A.W., Agewall, S.: European guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 37(29), 2315–2381 (2016). https://doi.org/10.17863/CAM.17

  5. Ambale-Venkatesh, B., et al.: Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ. Res. 121(9), 1092–1101 (2017). https://doi.org/10.1161/circresaha.117.311312

    Article  Google Scholar 

  6. Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N.: Can machine-learning improve cardio-vascular risk prediction using routine clinical data? PloS one 12(4), e0174944 (2017). https://doi.org/10.1371/journal.pone.0174944

  7. Goff, D.C., Lloyd-Jones, D.M., Bennett, G., Coady, S., D’Agostino, R.B., Gibbons, R., et al.: ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 135(11), 1–50 (2013)

    Google Scholar 

  8. Plekhova, N. G., et al.: Association of cardiovascular events and blood pressure and serum lipoprotein indicators based on functional data analysis as a personalized approach to the diagnosis. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2020. AISC, vol. 1295, pp. 278–293. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63319-6_24

    Chapter  Google Scholar 

  9. Emerging risk factors collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 367(14), 1310±20 (2012). https://doi.org/10.1056/NEJMoa1107477, PMID: 23034020

  10. Osborn DP, Hardoon S, Omar RZ, Holt RI, King M, Larsen J, et al. Cardiovascular risk prediction models for people with severe mental illness: results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program. JAMA Psychiatry 72(2), 143±51 (2015). https://doi.org/10.1001/jamapsychiatry.2014.2133, PMID: 25536289

  11. Wannamethee, S.G., Shaper, A.G., Perry, I.J.: Serum creatinine concentration and risk of cardiovascular disease: a possible marker for increased risk of stroke. Stroke J. Cereb. Circ. 28(3), 557±63 (1997)

    Google Scholar 

  12. Batista GEAPA, Monard MC. An analysis of four missing data treatment methods for supervised learning. Appl. Artif. Intell. 17(5–6), 519–33 (2003)

    Google Scholar 

  13. Hosmer, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, 3rd edn. Wiley, New Jersey (2013)

    Book  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5±32 (2001)

    Google Scholar 

  15. Rigatti, S.J.: Random forest. J. Insurance Med. (New York, N.Y.), 47(1), 31–39 (2017). https://doi.org/10.17849/insm-47-01-31-39.1

  16. Hagan, M., Demuth, H., Beale, M., De Jesus, O.: Neural Network Design, 2nd edn. PWS Publishers, Boston (2014)

    Google Scholar 

  17. Uddin, S., Khan, A., Hossain, M.E., Moni, M.A.: Comparing different super-vised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19(1), 281 (2019). https://doi.org/10.1186/s12911-019-1004-8

    Article  Google Scholar 

  18. Zahid, F.M., Heumann, C.: Multiple imputation with sequential penalized regression. Stat. Methods Med. Res. 28(5), 1311–1327 (2019). https://doi.org/10.1177/0962280218755574

    Article  MathSciNet  Google Scholar 

  19. Quesada, J.A., et al.: Machine learning to predict cardiovascular risk. Int. J. Clin. Pract. 73(10), e13389 (2019). https://doi.org/10.1111/ijcp.13389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Priseko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plekhova, N.G., Nevzorova, V.A., Chernenko, I.N., Priseko, L.G., Shestopalov, E.Y. (2022). Comparative Analysis of Machine Learning Methods for Assessing the Predictive Potential of Risk Factors for the Development of Cardiovascular Diseases. In: Silhavy, R. (eds) Artificial Intelligence Trends in Systems. CSOC 2022. Lecture Notes in Networks and Systems, vol 502. Springer, Cham. https://doi.org/10.1007/978-3-031-09076-9_18

Download citation

Publish with us

Policies and ethics