Skip to main content

The Dentition of the Hofmeyr Skull

  • Chapter
  • First Online:
Hofmeyr

Abstract

The Hofmeyr skull provides a rare representation of the dentition in sub-Saharan Africa from MIS 3. Aspects of the teeth demonstrate this individual’s close morphological and morphometric ties to South African Holocene and Late Pleistocene dentitions. Dental variation, particularly as it relates to size, is quite broad within the South African context. The Hofmeyr molars reside at the extreme range of morphometric variation observed in Holocene Khoesan dentitions, and find similitude with other large-crowned individuals from the southern and eastern regions of South Africa. A number of non-metrical trait commonalities are observed between the Hofmeyr and South African Khoesan teeth. While only a few of the traits that comprise the “Sub-Saharan African Dental Complex” (SSADC) could be scored for Hofmeyr, a midline diastema, a 3-rooted M2 and a M3 metaconule represent traits also observed in high frequencies among South African Holocene individuals. Additionally, several high frequency traits from the SSADC are observed in the Hofmeyr dentition, but the disparate frequencies among a number of populations that comprise this model in some of the variants (e.g., the Y occlusal pattern on the M2 and the presence of 5 cusps on the M3) make application of the SSADC to the South African dental map problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman, F. (1953). Le Méchanisme des Machoires. Masson.

    Google Scholar 

  • Adams, D. M., Swenson, V. M., & Scott, G. R. (2019). Global distribution of marginal accessory cusps of the maxillary premolars. Dental Anthropology, 32, 8–15.

    Google Scholar 

  • Alvesalo, L., Nuutila, M., & Portin, P. (1975). The cusp of Carabelli: Occurrence in first upper molars and evaluation of its heritability. Acta Odontologica Scandinavica, 33, 191–197.

    Google Scholar 

  • Aubry, B. S. (2009). Population structure and interregional interaction in pre-Hispanic Mesoamerica: A biodistance study. Ph.D. dissertation, The Ohio State University.

    Google Scholar 

  • Aubrey, B. S. (2014). Cervical dimensions for in situ and loose teeth: A critique of the Hillson et al. (2005) method. American Journal of Physical Anthropology, 154, 159–164.

    Google Scholar 

  • Bailey, S. (2000). Dental morphological affinities among Late Pleistocene and recent humans. Dental Anthropology, 14, 1–8.

    Google Scholar 

  • Bailey, S. E., Weaver, T. D., & Hublin, J. J. (2017). The dentition of the earliest modern humans: How ‘modern’ are they? In: A. Marom, & E. Hovers (Eds.), Human paleontology and prehistory. Contributions in honor of Yoel Rak (pp. 215–232). Springer.

    Google Scholar 

  • Barker, B. C. W., Parsons, K. C., Mills, P. R., & Williams, G. L. (1974). Anatomy of root canals. III. Permanent mandibular molars. Australian Dental Journal, 19, 408–413.

    Google Scholar 

  • Barnes, D. S. (1969). Tooth morphology and other aspects of the Teso dentition. American Journal of Physical Anthropology, 30, 183–194.

    Google Scholar 

  • Beaumont, P. B., & Vogel, J. C. (1972). On a new radiocarbon chronology for Africa south of the Equator, Part 2. African Studies, 31, 155–182.

    Google Scholar 

  • Benazzi, S., Coquerelle, M., Fiorenza, L., Bookstein, F., Katina, S., & Kullmer, O. (2011). Comparison of dental measurement systems for taxonomic assignment of first molars. American Journal of Physical Anthropology, 144, 342–354.

    Google Scholar 

  • Bernal, V., Perez, S. I., Gonzalez, P. N., & Diniz-Filho, J. A. F. (2009). Ecological and evolutionary factors in dental morphological diversification among modern human populations from southern South America. Proceedings of the Royal Society B, 277, 1107–1112.

    Google Scholar 

  • Black, W. (2014). Dental morphology and variation across Holocene Khoesan people of southern Africa. Ph.D. thesis, University of Cape Town.

    Google Scholar 

  • Blanco, R., & Chakraborty, R. (1976). The genetics of shovel shape in maxillary central incisors in man. American Journal of Physical Anthropology, 44, 233–236.

    Google Scholar 

  • Blumberg, J. E., Hylander, W. L., & Goepp, R. A. (1971). Taurodontism: A biometric study. American Journal of Physical Anthropology, 34, 243–256.

    Google Scholar 

  • Bocaege, E., & Humphrey, L. T. (2016). Lateral enamel growth in human incisors from Çatalhöyük in Turkey. American Journal of Physical Anthropology, 161, 656–666.

    Google Scholar 

  • Bousman, C. B., & Brink, J. S. (2018). The emergence, spread, and termination of the Early Later Stone Age event in South Africa and southern Namibia. Quaternary International, 495, 116–135.

    Google Scholar 

  • Brabant, H. (1963). Observations anthropologiques et odontologiques sur les dents des Hutu du Rwanda (Vol. 47). Musée royal de lÅ̓frique centrale.

    Google Scholar 

  • Brandt, S., Hildebrand, E., Vogelsang, R., Wolfhagen, J., & Wang, H. (2017). A new MIS 3 radiocarbon chronology for Mochena Borago Rockshelter, SW Ethiopia: Implications for the interpretation of Late Pleistocene chronostratigraphy and human behavior. Journal of Archaeological Science Reports, 11, 352–369.

    Google Scholar 

  • Bräuer, G., & Mehlman, M. J. (1988). Hominid molars from a Middle Stone Age level at the Mumba Rock Shelter, Tanzania. American Journal of Physical Anthropology, 75, 69–76.

    Google Scholar 

  • Brook, A. H. (2009). Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Archives of Oral Biology, 54S, S3-17.

    Google Scholar 

  • Cameriere, R., Ferrante, L., & Cingolani, M. (2004). Variations in pulp/tooth area ratio as an indicator of age: A preliminary study. Journal of Forensic Science, 49, 317–319.

    Google Scholar 

  • Chagula, W. K. (1960). The cusps on the mandibular molars of East Africans. American Journal of Physical Anthropology, 18, 83–90.

    Google Scholar 

  • Constant, D. A., & Grine, F. E. (2001). A review of taurodontism with new data on indigenous southern African populations. Archives of Oral Biology, 46, 1021–1029.

    Google Scholar 

  • Copeland, S., Grimes, V., Neveling, J., Lee-Thorp, J. A., Grine, F. E., Yang, Z., et al. (2022). Isotopic evidence for the geographic origin, movement and diet of the Hofmeyr individual. In: F. E. Grine (Ed.), Hofmeyr—A Late Pleistocene human skull from South Africa (pp. 47–68). Springer.

    Google Scholar 

  • Crevecoeur, I., Rougier, H., Grine, F. E., & Froment, A. (2009). Modern human cranial diversity in the Late Pleistocene of Africa and Eurasia: Evidence from Nazlet Khater, Peştera cu Oase, and Hofmeyr. American Journal of Physical Anthropology, 140, 347–358.

    Google Scholar 

  • Cucina, A., Edgar, H., & Ragsdale, C. (2018). Oaxaca and its neighbors in pre-Hispanic times: Population movements from the perspective of dental morphological traits. Journal of Archaeological Science Reports, 13, 751–758.

    Google Scholar 

  • Day, M. H. (1969). Early Homo sapiens remains from the Omo River region of southwest Ethiopia. Nature, 222, 1132–1138.

    Google Scholar 

  • Deacon, J. (1984). The Later Stone Age of southernmost Africa (p. 123). British Archaeological Reports International Series.

    Google Scholar 

  • Dean, M. C. (1998). A comparative study of cross striation spacings in cuspal enamel and of four methods of estimating the time taken to grow molar cuspal enamel in Pan, Pongo and Homo. Journal of Human Evolution, 35, 449–462.

    Google Scholar 

  • Delgado, M., Ramírez, L. M., Adhikari, K., Fuentes-Guajardo, M., Zanolli, C., Gonzalez-José, R., et al. (2018). Variation in dental morphology and inference of continental ancestry in admixed Latin Americans. American Journal of Physical Anthropology, 168, 438–447.

    Google Scholar 

  • Dempsey, P. J., & Townsend, G. C. (2001). Genetic and environmental contributions to variation in human tooth size. Heredity, 86, 685–693.

    Google Scholar 

  • d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., et al. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109, 13214–13219.

    Google Scholar 

  • de Villiers, H. (1976). A second adult human mandible from Border Cave, Ingwavuma District, KwaZulu Natal, South Africa. South African Journal of Science, 72, 212–215.

    Google Scholar 

  • Drusini, A. G., Toso, O., & Ranzato, C. (1997). The coronal pulp cavity index: A biomarker for age determination in human adults. American Journal of Physical Anthropology, 103, 353–363.

    Google Scholar 

  • Faig-Leite, H., Fernandes, R. G., & Camargo, A. M. A. (2001). Anatomic study of the cervical enamel projection in molars teeth. Journal of Dental Research, 80, 1086.

    Google Scholar 

  • Faramarzi, F., Shahriari, S., Shokri, A., Vossoghi, M., & Yaghoobi, G. (2013). Radiographic evaluation of root and canal morphologies of third molar teeth in Iranian population. Avicenna Journal of Dental Research, 5, e21102.

    Google Scholar 

  • Fitzgerald, C. M., & Hillson, S. (2008). Dental reduction in Late Pleistocene and Early Holocene hominids: Alternative approaches to assessing tooth size. In J. Irish (Ed.), Technique and application in dental anthropology (pp. 364–388). Cambridge University Press.

    Google Scholar 

  • Foster, C. L., & Harris, E. F. (2009). Discriminatory effectiveness of crown indexes—Tests between American blacks and whites. Dental Anthropology, 22, 85–92.

    Google Scholar 

  • Frayer, D. W. (1977). Metric dental change in the European Upper Paleolithic and Mesolithic. American Journal of Physical Anthropology, 46, 109–120.

    Google Scholar 

  • Gliganic, L. A., Jacobs, Z., Roberts, R. G., Domínguez-Rodrigo, M., & Mabulla, A. Z. P. (2012). New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: Optically stimulated luminescence dating of quartz and feldspar grains. Journal of Human Evolution, 62, 533–547.

    Google Scholar 

  • Gonder, M. K., Mortensen, H. M., Reed, F. A., de Sousa, A., & Tishkoff, S. A. (2007). Whole-mtDNA genome sequence analysis of ancient African lineages. Molecular Biology and Evolution, 24, 757–768.

    Google Scholar 

  • Grine, F. E. (1981a). Occlusal morphology of the mandibular permanent molars of the South African Negro and Kalahari San (Bushman). Annals of the South African Museum, 86, 157–215.

    Google Scholar 

  • Grine, F. E. (1981b). Relative sizes of the maxillary deciduous canine and central incisor teeth in the Kalahari San (Bushman) and South African Negro. Annals of the South African Museum, 86, 229–245.

    Google Scholar 

  • Grine, F. E. (1986). Anthropological aspects of the deciduous teeth of South African blacks. In R. Singer & J. K. Lundy (Eds.), Variation, culture and evolution in African populations: Papers in honour of Professor Hertha de Villiers (pp. 47–83). Witwatersrand University Press.

    Google Scholar 

  • Grine, F. E. (1990). Deciduous dental features of Kalahari San: Comparison of non-metrical traits. In G. H. Sperber (Ed.), From apes to angels: Essays in honor of Phillip (Vol. Tobias, pp. 153–169). Wiley-Liss.

    Google Scholar 

  • Grine, F. E. (1998). Additional human fossils from the Middle Stone Age of Die Kelders Cave 1, South Africa: 1995 excavations. South African Journal of Science, 94, 229–235.

    Google Scholar 

  • Grine, F. E. (2000). Middle Stone Age human fossils from Die Kelders Cave 1, Western Cape Province, South Africa. Journal of Human Evolution, 38, 129–145.

    Google Scholar 

  • Grine, F. E. (2012). Observations on Middle Stone Age human teeth from Klasies River Main Site. South Africa. Journal of Human Evolution, 63, 750–758.

    Google Scholar 

  • Grine, F. E. (2016). The late Quaternary hominins of Africa: The skeletal evidence from MIS 6–2. In S. C. Jones & B. A. Stewart (Eds.), Africa from MIS 6–2: Population dynamics and paleoenvironments (pp. 323–381). Springer.

    Google Scholar 

  • Grine, F. E., & Henshilwood, C. S. (2002). Additional human remains from Blombos Cave, South Africa: (1999–2000 excavations). Journal of Human Evolution, 42, 293–302.

    Google Scholar 

  • Grine, F. E., & Klein, R. G. (1985). Pleistocene and Holocene human remains from Equus Cave, South Africa. Anthropology, 8, 55–98.

    Google Scholar 

  • Grine, F. E., & Klein, R. G. (1993). Late Pleistocene human remains from the Sea Harvest site, Saldanha Bay, South Africa. South African Journal of Science, 89, 145–152.

    Google Scholar 

  • Grine, F. E., Klein, R. G., & Volman, T. P. (1991). Dating, archaeology and human fossils from the Middle Stone Age Layers of Die Kelders Cave 1, South Africa. Journal of Human Evolution, 21, 363–395.

    Google Scholar 

  • Grine, F. E., Henshilwood, C. S., & Sealy, J. C. (2000). Human remains from Blombos Cave, South Africa: (1997–1998 excavations). Journal of Human Evolution, 38, 755–765.

    Google Scholar 

  • Grine, F. E., Bailey, R. M., Harvati, K., Nathan, R. P., Morris, A. G., Henderson, G. M., et al. (2007). Late Pleistocene human skull from Hofmeyr, South Africa, and modern human origins. Science, 315, 226–229.

    Google Scholar 

  • Grine, F. E., Gunz, P., Betti-Nash, L., Neubauer, S., & Morris, A. G. (2010). Reconstruction of the Late Pleistocene human skull from Hofmeyr, South Africa. Journal of Human Evolution, 59, 1–15.

    Google Scholar 

  • Grine, F. E., Wurz, S., & Marean, C. W. (2017). The Middle Stone Age human fossil record from Klasies River Main Site. Journal of Human Evolution, 103, 53–78.

    Google Scholar 

  • Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics, 43, 1031–1034.

    Google Scholar 

  • Guatelli-Steinberg, D., & Reid, D. J. (2008). What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution, 54, 236–250.

    Google Scholar 

  • Guatelli-Steinberg, D., & Reid, D. J. (2010). The distribution of perikymata on Qafzeh anterior teeth. American Journal of Physical Anthropology, 141, 152–157.

    Google Scholar 

  • Guatelli-Steinberg, D., Floyd, B. A., Dean, M. C., & Reid, D. J. (2012). Enamel extension rate patterns in modern human teeth: Two approaches designed to establish an integrated comparative context for fossil primates. Journal of Human Evolution, 63, 475–486.

    Google Scholar 

  • Gunz, P., & Freidline, S. E. (2022). Cranial form of the Hofmeyr skull: Comparative 3D geometric morphometrics. In: F. E. Grine (Ed.), Hofmeyr—A Late Pleistocene human skull from South Africa (pp. 143–150). Springer

    Google Scholar 

  • Guerisoli, D. M. Z., de Souza, R. A., de Sousa Neto, M. D., Silva, R. G., & Pécora, J. D. (1998). External and internal anatomy of third molars. Brazilian Dental Journal, 9, 91–94.

    Google Scholar 

  • Gulabivala, K., Aung, T. H., & Ng, Y. L. (2001). Root and canal morphology of Burmese mandibular molars. International Endodontic Journal, 34, 359–370.

    Google Scholar 

  • Habgood, P. J. (1989). An examination of regional features on Middle and Early Late Pleistocene sub-Saharan African hominids. South African Archaeological Bulletin, 44, 17–22.

    Google Scholar 

  • Hanihara, T. (2008). Morphological variation of major human populations based on nonmetric dental traits. American Journal of Physical Anthropology, 136, 169–182.

    Google Scholar 

  • Hanihara, T., & Ishida, H. (2005). Metric dental variation of major human populations. American Journal of Physical Anthropology, 128, 287–298.

    Google Scholar 

  • Harris, E. F., & Bailit, H. L. (1988). A principal components analysis of human odontometrics. American Journal of Physical Anthropology, 75, 87–99.

    Google Scholar 

  • Harvati, K., Bauer, C. C., Grine, F. E., Benazzi, S., Ackermann, R. R., van Niekerk, K. L., et al. (2015). A human deciduous molar from the Middle Stone Age (Howiesons Poort) of Klipdrift Shelter, South Africa. Journal of Human Evolution, 82, 190–196.

    Google Scholar 

  • Haeussler, A. M., Irish, J. D., Morris, D. H., & Turner, C. G. (1989). Morphological and metrical comparison of San and Central Sotho dentitions from southern Africa. American Journal of Physical Anthropology, 78, 115–122.

    Google Scholar 

  • Hellenthal, G., Busby, G. B., Band, G., Wilson, J. F., Capelli, C., Falush, D., & Myers, S. (2014). A genetic atlas of human admixture history. Science, 343(6172), 747–751.

    Google Scholar 

  • Hellman, M. (1928). Racial characters in the human dentition. Part I. A racial distribution of the Dryopithecus pattern and its modifications in the lower molar teeth of man. Proceedings of the American Philosophical Society, 67, 157–174.

    Google Scholar 

  • Henn, B. M., Steele, T. E., & Weaver, T. D. (2018). Clarifying distinct models of modern human origins in Africa. Current Opinion in Genetics & Development, 53, 148–156.

    Google Scholar 

  • Hillson, S. (1996). Dental anthropology. Cambridge University Press.

    Google Scholar 

  • Hillson, S. W. (2014). Tooth development in human evolution and bioarchaeology. Cambridge University Press.

    Google Scholar 

  • Hillson, S., Fitzgerald, C., & Flinn, H. (2005). Alternative dental measurements: Proposals and relationships with other measurements. American Journal of Physical Anthropology, 126, 413–426.

    Google Scholar 

  • Hubbard, A. R., Guatelli-Steinberg, D., & Irish, J. D. (2015). Do nuclear DNA and dental nonmetric data produce similar reconstructions of regional population history? An example from modern coastal Kenya. American Journal of Physical Anthropology, 157, 295–304.

    Google Scholar 

  • Irish, J. D. (1993). Biological affinities of Late Pleistocene through modern African aboriginal populations: The dental evidence. Ph.D. dissertation, Arizona State University, Tempe.

    Google Scholar 

  • Irish, J. D. (1998a). Ancestral dental traits in recent sub-Saharan Africans and the origins of modern humans. Journal of Human Evolution, 34, 81–98.

    Google Scholar 

  • Irish, J. D. (1998b). Characteristic high- and low-frequency dental traits in sub-Saharan African populations. American Journal of Physical Anthropology, 102, 455–467.

    Google Scholar 

  • Irish, J. D. (1998c). Dental morphological affinities of Late Pleistocene through recent sub-Saharan and North African peoples. Bulletins Et Mémoires De La Société D’anthropologie De Paris, 20, 237–272.

    Google Scholar 

  • Irish, J. D. (1998d). Diachronic and synchronic dental trait affinities of Late and post-Pleistocene peoples from North Africa. Homo, 49, 138–155.

    Google Scholar 

  • Irish, J. D. (2006). Who were the ancient Egyptians? Dental affinities among Neolithic through postdynastic peoples. American Journal of Physical Anthropology, 129, 529–543.

    Google Scholar 

  • Irish, J. D. (2013). Afridonty: The “Sub-Saharan African Dental Complex” revisited. In: G. R. Scott, G. R., & J. D. Irish (Eds), Anthropological perspectives on tooth morphology: genetics, evolution, variation (pp 278–295). Cambridge University Press

    Google Scholar 

  • Irish, J. D. (2016a). Alternate methods to assess phenetic affinities and genetic structure among seven South African “Bantu” groups based on dental nonmetric data. In M. A. Pilloud & J. T. Hefner (Eds.), Biological distance analysis: Forensic and bioarchaeological perspectives (pp. 363–389). Academic.

    Google Scholar 

  • Irish, J. D. (2016b). Who were they really? Model-free and model-bound dental nonmetric analyses to affirm documented population affiliations of seven South African “Bantu” samples. American Journal of Physical Anthropology, 159, 655–670.

    Google Scholar 

  • Irish, J. D., & Guatelli-Steinberg, D. (2003). Ancient teeth and modern human origins: An expanded comparison of African Plio-Pleistocene and recent world dental samples. Journal of Human Evolution, 45, 113–144.

    Google Scholar 

  • Irish, J. D., Black, W., Sealy, J., & Ackermann, R. R. (2014). Questions of Khoesan continuity: Dental affinities among the indigenous Holocene peoples of South Africa. American Journal of Physical Anthropology, 155, 33–44.

    Google Scholar 

  • Jacobson, A. (1982). The dentition of the South African Negro: A morphological and metrical study of the teeth, the jaws, and the bony palate of several large groups of South African Bantu-speaking Negroes. Higgenbotham.

    Google Scholar 

  • Jeon, H. M., Kim, J. H., Hea, J. Y., Ok, S. M., Jeong, S. H., & Ahn, Y. W. (2015). Age Estimation by radiological measuring pulp chamber of mandibular first molar in Korean adults. Journal of Oral Medicine and Pain, 40, 146–154.

    Google Scholar 

  • Kaye, K. W. (1965). Report on a fossil human skull from Hofmeyr, Eastern Cape. B.Sc. honours thesis, University of the Witwatersrand.

    Google Scholar 

  • Keene, H. J. (1966). A morphologic and biometric study of taurodontism in a contemporary population. American Journal of Physical Anthropology, 25, 208–209.

    Google Scholar 

  • Kieser, J. A. (1990). Human adult odontometrics. Cambridge University Press.

    Google Scholar 

  • Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., et al. (2009). A common variation in EDAR is a genetic determinant of shovel-shaped incisors. American Journal of Human Genetics, 85, 528–535.

    Google Scholar 

  • Kuzekanani, M., Haghani, J., & Nosrati, H. (2012). Root and canal morphology of mandibular third molars in an Iranian population. Journal of Dental Research, Dental Clinics, Dental Prospects, 6, 85–88.

    Google Scholar 

  • Kvaal, S. I., Kollveit, K. M., Thomsen, I. O., & Solheim, T. (1995). Age estimation of adults from dental radiographs. Forensic Science International, 74, 175–185.

    Google Scholar 

  • Lam, Y. M., Pearson, O. M., & Smith, C. M. (1996). Chin morphology and sexual dimorphism in the fossil hominid mandible sample from Klasies River Mouth. American Journal of Physical Anthropology, 100, 545–577.

    Google Scholar 

  • Lachance, J., Vernot, B., Elbers, C. C., Ferwerda, B., Froment, A., Bodo, J. M., et al. (2012). Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell, 150, 457–469.

    Google Scholar 

  • Lavelle, C. (1971). Mandibular molar tooth configurations in different racial groups. Journal of Dental Research, 50, 1353.

    Google Scholar 

  • Lekkas, D., & Townsend, G. (1996). Cervical enamel projections and enamel pearls in a collection of Australian extracted molars. Dental Anthropology Newsletter, 11, 2–6.

    Google Scholar 

  • Lim, H. C., Jeon, S. K., Cha, J. K., Lee, J. S., Choi, S. H., & Jung, U. W. (2016). Prevalence of cervical enamel projection and its impact on furcation involvement in mandibular molars: A cone-beam computed tomography study in Koreans. Anatomical Record, 299, 379–384.

    Google Scholar 

  • Lisiecki, L. E., & Raymo, M. E. (2005). A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA2007. https://doi.org/10.1029/2005PA001164

  • Liversidge, H. M. (2008). Timing of human mandibular third molar formation. Annals of Human Biology, 35, 294–321.

    Google Scholar 

  • Mackay, A., Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the Late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 72, 26–51.

    Google Scholar 

  • McCrossin, M. L. (1992). Human molars from later Pleistocene deposits of Witkrans Cave, Gaap escarpment, Kalahari margin. Human Evolution, 7, 1–10.

    Google Scholar 

  • Meinl, A., Tangl, S., Pernicka, E., Fenes, C., & Watzek, G. (2007). On the applicability of secondary dentin formation to radiological age estimation in young adults. Journal of Forensic Science, 52, 438–441.

    Google Scholar 

  • Mitchell, P. J. (2002). The archaeology of southern Africa. Cambridge University Press.

    Google Scholar 

  • Mitchell, P. J. (2008). Developing the archaeology of Marine Isotope Stage 3. South African Archaeological Bulletin, Goodwin Series, 10, 52–65.

    Google Scholar 

  • Mizoguchi, Y. (1977). Genetic variability in tooth crown characters: Analysis by the tetrachoric correlation method. Bulletin of the National Science Museum Series d, Anthropology, 3, 37–62.

    Google Scholar 

  • Modesto-Mata, M., Dean, M. C., de Castro, J. M. B., Martinón-Torres, M., Rodríguez-Hidalgo, A., Marín, J., et al. (2017). Perikymata numbers and enamel extension rates in the incisors of three archaeological modern human populations from two caves located in Spain: Maltravieso Cave (Cáceres) and Mirador Cave (Burgos). Quaternary International, 433, 114–123.

    Google Scholar 

  • Morris, A. G. (2022). Lost and found: The discovery and rediscovery of the Hofmeyr skull. In: F. E. Grine (Ed.), Hofmeyr—A Late Pleistocene human skull from South Africa (pp. 9–18). Springer

    Google Scholar 

  • Morris, D. H. (1986). Maxillary molar occlusal polygons in five human samples. American Journal of Physical Anthropology, 70, 333–338.

    Google Scholar 

  • Opperman, H., & Heydenrych, B. (1990). A 22 000 year-old Middle Stone Age camp site with plant food remains from the North-Eastern Cape. South African Archaeological Bulletin, 45, 93–99.

    Google Scholar 

  • Oranje, P. (1934). The dentition of the Bush race. South African Journal of Science, 31, 576.

    Google Scholar 

  • Paewinsky, E., Pfeiffer, H., & Brinkmann, B. (2005). Quantification of secondary dentine formation from orthopantomograms—A contribution to forensic age estimation methods in adults. International Journal of Legal Medicine, 119, 27–30.

    Google Scholar 

  • Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., et al. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, 508–514.

    Google Scholar 

  • Paul, K. S., & Stojanowski, C. M. (2017). Comparative performance of deciduous and permanent dental morphology in detecting biological relatives. American Journal of Physical Anthropology, 164, 97–116.

    Google Scholar 

  • Pearson, O., Grine, F. E., Barham, L., & Stringer, C. (2000). Human remains from the Middle and Later Stone Age of Mumbwa Caves. In L. Barham (Ed.), The Middle Stone Age of Zambia, South Central Africa (pp. 149–164). Western Academic & Specialist Press.

    Google Scholar 

  • Pearson, O. M., Fleagle, J. G., Grine, F. E., & Royer, D. F. (2008). Further new hominin fossils from the Kibish Formation, southwestern Ethiopia. Journal of Human Evolution, 55, 444–447.

    Google Scholar 

  • Petersen, D. C., Libiger, O., Tindall, E. A., Hardie, R. A., Hannick, L. I., Glashoff, R. H., et al. (2013). Complex patterns of genomic admixture within southern Africa. PLoS Genetics, 9, e1003309.

    Google Scholar 

  • Philippas, G. G. (1961). Influence of occlusal wear and age on formation of dentin and size of pulp chamber. Journal of Dental Research, 40, 1186–1198.

    Google Scholar 

  • Pickrell, J. K., Patterson, N., Barbieri, C., Berthold, F., Gerlach, L., Lipson, M., et al. (2012). The genetic prehistory of southern Africa. Nature Communications, 3, 1–6.

    Google Scholar 

  • Pickrell, J. K., Patterson, N., Loh, P. R., Lipson, M., Berger, B., Stoneking, M., Pakendorf, B., & Reich, D. (2014). Ancient west Eurasian ancestry in southern and eastern Africa. Proceedings of the National Academy of Sciences, 111, 2632–2637.

    Google Scholar 

  • Pilloud, M. A., & Larsen, C. S. (2011). “Official” and “practical” kin: Inferring social and community structure from dental phenotype at Neolithic Catalhoyuk, Turkey. American Journal of Physical Anthropology, 145, 519–530.

    Google Scholar 

  • Plug, I. (2004). Resource exploitation: Animal use during the Middle Stone Age at Sibudu Cave, KwaZulu-Natal. South African Journal of Science, 100, 151–158.

    Google Scholar 

  • Rathmann, H., Saltini Semerari, G., & Harvati, K. (2016). Evidence for migration influx into the ancient Greek colony of Metaponto. A population genetics approach using dental nonmetric traits. International Journal of Osteoarchaeology, 27, 453–464.

    Google Scholar 

  • Rathmann, H., Reyes-Centeno, H., Ghirotto, S., Creanza, N., Hanihara, T., & Harvati, K. (2017). Reconstructing human population history from dental phenotypes. Scientific Reports, 7, 12495.

    Google Scholar 

  • Reid, D. J., & Dean, M. C. (2006). Variation in modern human enamel formation times. Journal of Human Evolution, 50, 329–346.

    Google Scholar 

  • Reid, D. J., & Ferrell, R. J. (2006). The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution, 50, 195–202.

    Google Scholar 

  • Reyes-Centeno, H., Rathmann, H., Hanihara, T., & Harvati, K. (2017). Testing modern human Out-of-Africa dispersal models using dental nonmetric data. Current Anthropology, 58, S406–S417.

    Google Scholar 

  • Riga, A., Oxilia, G., Panetta, D., Salvadori, P. A., Benazzi, S., Wadley, L., et al. (2018). Human deciduous teeth from the Middle Stone Age layers of Sibudu Cave (South Africa). Journal of Anthropological Sciences, 96, 75–87.

    Google Scholar 

  • Rightmire, P. G., & Deacon, H. J. (2001). New human teeth from the Middle Stone Age deposits at Klasies River Mouth, South Africa. Journal of Human Evolution, 41, 535–544.

    Google Scholar 

  • Risnes, S. (1974). The prevalence and distribution of cervical enamel projections reaching into the bifurcation on human molars. European Journal of Oral Sciences, 82, 413–419.

    Google Scholar 

  • Romero, A., Ramirez-Rozzi, F. V., & Perez-Perez, A. (2018). Dental size variability in Central African Pygmy hunter-gatherers and Bantu-speaking farmers. American Journal of Physical Anthropology, 166, 671–681.

    Google Scholar 

  • Rothhammer, F., Lasserre, E., Blanco, R., Covarrubias, E., & Dixon, M. (1968). Microevolution in human Chilean populations. IV. Shovel shape, mesial-palatal version and other dental traits in Pewenche Indians. Zeitschrift Für Morphologie Und Anthropologie, 60, 162–169.

    Google Scholar 

  • Royer, D. F., Lockwood, C. A., Scott, J. E., & Grine, F. E. (2009). Size variation in early human mandibles and molars from Klasies River, South Africa: Comparison with other Middle and Late Pleistocene assemblages and with modern humans. American Journal of Physical Anthropology, 140, 312–323.

    Google Scholar 

  • Sampieri, M. B. S., Viana, F. L. P., Cardoso, C. L., Vasconcelos, M. F., Vasconcelos, M. H. F., & Gonçales, E. S. (2018). Radiographic study of mandibular third molars: Evaluation of the position and root anatomy in Brazilian population. Oral and Maxillofacial Surgery, 22, 163–168.

    Google Scholar 

  • Scerri, E. M. L., Niang, K., Candy, I., Blinkhorn, J., Mills, W., Cerasoni, J. N., et al. (2021). Continuity of the Middle Stone Age into the Holocene. Scientific Reports, 11, 70. https://doi.org/10.1038/s41598-020-79418-4

    Article  Google Scholar 

  • Schlebusch, C. M., Skoglund, P., Sjödin, P., Gattepaille, L. M., Hernandez, D., Jay, F., et al. (2012). Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science, 338, 374–379.

    Google Scholar 

  • Schlebusch, C. M., Lombard, M., & Soodyall, H. (2013). MtDNA control region variation affirms diversity and deep sub-structure in populations from southern Africa. BMC Evolutionary Biology, 13, 1–21.

    Google Scholar 

  • Scott, G. R., & Alexandersen, V. (1992). Dental morphological variation among medieval Greenlanders, Icelanders, and Norwegians. In P. Smith & E. Tchernov (Eds.), Structure, function and evolution of teeth (pp. 467–490). Freund Publishing House.

    Google Scholar 

  • Scott, G. R., & Turner, C. G. (1997). The anthropology of modern human teeth. Dental morphology and its variation in recent human populations. Cambridge University Press.

    Google Scholar 

  • Scott, G., Turner, C., Townsend, G., & Martinón-Torres, M. (2018). The anthropology of modern human teeth. Dental morphology and its variation in recent and fossil Homo sapiens (2nd ed.). Cambridge University Press.

    Google Scholar 

  • Sert, S., & Bayirli, G. S. (2004). Evaluation of the root canal configurations of the mandibular and maxillary permanent teeth by gender in the Turkish population. Journal of Endodontics, 30, 391–398.

    Google Scholar 

  • Shellis, R. P. (1984). Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology, 29, 697–705.

    Google Scholar 

  • Shifman, A., & Chanannel, I. (1978). Prevalence of taurodontism found in radiographic dental examination of 1,200 young adult Israeli patients. Community Dentistry and Oral Epidemiology, 6, 200–203.

    Google Scholar 

  • Sidow, S. J., West, L. A., Liewehr, F. R., & Loushine, R. J. (2000). Root canal morphology of human maxillary and mandibular third molars. Journal of Endodontics, 26, 675–678.

    Google Scholar 

  • Sillen, A., & Morris, A. (1996). Diagenesis of bone from Border Cave: Implications for the age of the Border Cave hominids. Journal of Human Evolution, 31, 499–506.

    Google Scholar 

  • Singer, R., & Wymer, J. (1982). The Middle Stone Age at Klasies River Mouth in South Africa. University of Chicago Press.

    Google Scholar 

  • Skoglund, P., Thompson, J. C., Prendergast, M. E., Mittnik, A., Sirak, K., Hajdinjak, M., Salie, T., Rohland, N., Mallick, S., Peltzer, A. & Heinze, A. (2017). Reconstructing prehistoric African population structure. Cell, 171(1), 59–71.

    Google Scholar 

  • Smith, B. H. (1984). Patterns of molar wear in hunter-gatherers and agriculturalists. American Journal of Physical Anthropology, 63, 39–56.

    Google Scholar 

  • Stefflova, K., Dulik, M. C., Barnholtz-Sloan, J. S., Pai, A. A., Walker, A. H., & Rebbeck, T. R. (2011). Dissecting the within-Africa ancestry of populations of African descent in the Americas. PLoS ONE, 6, e14495.

    Google Scholar 

  • Stojanowski, C. M. (2007). Comment on “Alternative dental measurements” by Hillson et al. American Journal of Physical Anthropology, 132, 234–237.

    Google Scholar 

  • Stojanowski, C. M., & Hubbard, A. R. (2018). Sensitivity of dental phenotypic data for the identification of biological relatives. International Journal of Osteoarchaeology, 27, 813–827.

    Google Scholar 

  • Stojanowski, C. M., Paul, K. S., Seidel, A. C., Duncan, W. N., & Guatelli-Steinberg, D. (2017). Heritability and genetic integration of tooth size in the South Carolina Gullah. American Journal of Physical Anthropology, 164, 505–521.

    Google Scholar 

  • Stynder, D. D., Ackermann, R. R., & Sealy, J. (2007). Craniofacial variation and population continuity during the South African Holocene. American Journal of Physical Anthropology, 134, 489–500.

    Google Scholar 

  • Tishkoff, S. A., Gonder, M. K., Henn, B. M., Mortensen, H., Knight, A., Gignoux, C., et al. (2007). History of click-speaking populations of Africa inferred from mtDNA and Y-chromosome genetic variation. Molecular Biology and Evolution, 24, 2180–2195.

    Google Scholar 

  • Tobias, P. V. (1980). The natural history of the helicoidal occlusal plane and its evolution in early Homo. American Journal of Physical Anthropology, 53, 173–187.

    Google Scholar 

  • Tomaszewska, I. M., Skinningsrud, B., Jarzębska, A., Pękala, J. R., Tarasiuk, J., & Iwanaga, J. (2018). Internal and external morphology of mandibular molars: An original micro-CT study and meta-analysis with review of implications for endodontic therapy. Clinical Anatomy, 31, 797–811.

    Google Scholar 

  • Townsend, G. C., & Brown, T. (1978a). Inheritance of tooth size in Australian Aboriginals. American Journal of Physical Anthropology, 48, 305–314.

    Google Scholar 

  • Townsend, G. C., & Brown, T. (1978b). Heritability of permanent tooth size. American Journal of Physical Anthropology, 49, 497–504.

    Google Scholar 

  • Townsend, G. C., & Martin, N. G. (1992). Fitting genetic models to Carabelli trait data in South Australian twins. Journal of Dental Research, 71, 403–409.

    Google Scholar 

  • Townsend, G. C., Yamada, H., & Smith, P. (1990). Expression of the entoconulid (sixth cusp) on mandibular molar teeth of an Australian Aboriginal population. American Journal of Physical Anthropology, 82, 267–274.

    Google Scholar 

  • Townsend, G., Richards, L., & Hughes, T. (2003). Molar intercuspal dimensions: Genetic input to phenotypic variation. Journal of Dental Research, 82, 350–355.

    Google Scholar 

  • Townsend, G., Bockmann, M., Hughes, T., & Brook, A. (2012). Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology, 100, 1–9.

    Google Scholar 

  • Trinkaus, E., Bailey, S. E., & Zilhão, J. (2001). Upper Paleolithic human remains from the Gruta do Caldeirao, Tomãr, Portugal. Revista Portuguesa De Arquelogia, 4, 5–17.

    Google Scholar 

  • Tryon, C. A. (2019). The Middle/Later Stone Age transition and cultural dynamics of Late Pleistocene East Africa. Evolutionary Anthropology, 28, 267–282.

    Google Scholar 

  • Tucker, A. S., Headon, D. J., Courtney, J. M., Overbeek, P., & Sharpe, P. T. (2004). The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Developmental Biology, 268, 185–194.

    Google Scholar 

  • Turner, C. G. (1990). Major features of Sundadonty and Sinodonty, including suggestions about East Asian microevolution, population history, and Late Pleistocene relationships with Australian Aboriginals. American Journal of Physical Anthropology, 82, 295–317.

    Google Scholar 

  • Turner, C. G., Nichol, C. R., & Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University Dental Anthropology System. In M. Kelley & C. Larsen (Eds.), Advances in dental anthropology (pp. 13–31). Wiley Liss.

    Google Scholar 

  • Vallois, H. V. (1951). La mandibule humaine fossile de la grotte du Porc-Épic près Dire Daoua (Abyssinie). L’anthropologie, 55, 231–238.

    Google Scholar 

  • Van Reenen, J. F. (1964). Dentition, jaws and palate of the Kalahari Bushman. Journal of the Dental Association of South Africa, 8, 1–37.

    Google Scholar 

  • Van Reenen, J. F. (1966). Dental features of a low-caries primitive population. Journal of Dental Research, 45, 703–713.

    Google Scholar 

  • Van Reenen, J. F. (1982). The effects of attrition on tooth dimensions of San (Bushmen). In: B. Kurtén (Ed.), Teeth: form, function and evolution (pp. 182–203). Columbia University Press.

    Google Scholar 

  • Veeramah, K. R., Wegmann, D., Woerner, A., Mendez, F. L., Watkins, J. C., Destro-Bisol, G., et al. (2012). An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Molecular Biology and Evolution, 29, 617–630.

    Google Scholar 

  • Veeramah, K. R., & Hammer, M. F. (2014). The impact of whole-genome sequencing on the reconstruction of human population history. Nature Reviews Genetics, 15, 149–162.

    Google Scholar 

  • Verna, C., Texier, P. J., Rigaud, J. P., Poggenpoel, C., & Parkington, J. (2013). The Middle Stone Age human remains from Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 40, 3532–3541.

    Google Scholar 

  • Viciano, J., López-Lázaro, S., & Alemán, I. (2013). Sex estimation based on deciduous and permanent dentition in a contemporary Spanish population. American Journal of Physical Anthropology, 152(1), 31–43.

    Google Scholar 

  • Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T. F. G., d’Errico, F., et al. (2012). Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109, 13208–13213.

    Google Scholar 

  • Wadley, L. (1993). The Pleistocene Later Stone Age south of the Limpopo River. Journal of World Prehistory, 7, 243–296.

    Google Scholar 

  • White, T. D., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G. D., Suwa, G., et al. (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature, 423, 742–747.

    Google Scholar 

  • Will, M., El-Zaatari, S., Harvati, K., & Conard, N. J. (2019). Human teeth from securely stratified Middle Stone Age contexts at Sibudu, South Africa. Archaeological and Anthropological Sciences, 11, 3491–3501.

    Google Scholar 

  • Willoughby, P. R., Compton, T., Bello, S. M., Bushozi, P. M., Skinner, A. R., & Stringer, C. B. (2018). Middle Stone Age human teeth from Magubike Rockshelter, Iringa Region, Tanzania. PLoS ONE, 13, e0200530.

    Google Scholar 

  • Zee, K. Y., & Bratthall, G. (2003). Prevalence of cervical enamel projection and its correlation with furcation involvement in Eskimos dry skulls. Swedish Dental Journal, 27, 43–48.

    Google Scholar 

  • Zilberman, U., & Smith, P. (2001). Sex- and age-related differences in primary and secondary dentin formation. Advances in Dental Research, 15, 42–45.

    Google Scholar 

  • Zorba, E., Spiliopoulou, C., & Moraitis, K. (2013). Evaluation of the accuracy of different molar teeth measurements in assessing sex. Forensic Science, Medicine and Pathology, 9, 13–23.

    Google Scholar 

  • Zubova, A. V., & Chikisheva, T. A. (2015). The morphology of human teeth from Afontova Gora II, southern Siberia, and their status relative to the dentition of other Upper Paleolithic northern Eurasians. Archaeology, Ethnology & Anthropology of Eurasia, 43, 135–143.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Kevin Cole, East London Museum for facilitating our study of the dentition of the Hofmeyr skull, and we thank Alan G. Morris for providing the original photographs of the specimen taken by A.R. Hughes. We are grateful to the Archaeology Unit at Iziko Museums of South Africa; the Florisbad Quaternary Research Centre, National Museums of Bloemfontein; the Department of Human Biology, University of Cape Town; the Albany Museum, Grahamstown, and the Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg for access to dental material. We thank Justin Pargeter and Jason Lewis for fruitful discussions relating to the emergence of the LSA in southern and eastern Africa. We thank Carrie S. Mongle for assistance with the micro-CT scans and Luci Betti-Nash for the figures. We are grateful to Lesley Harrington and Lucas Delezene for constructive comments on the manuscript, which have served to substantially improve this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Black .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Black, W., Grine, F.E. (2022). The Dentition of the Hofmeyr Skull. In: Grine, F.E. (eds) Hofmeyr. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-031-07426-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07426-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07425-7

  • Online ISBN: 978-3-031-07426-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics