Skip to main content

Robots Collecting Data: Modelling Stores

  • Chapter
  • First Online:
Robotics for Intralogistics in Supermarkets and Retail Stores

Abstract

Retail stores are a promising application domain for autonomous robotics. Unlike other domains, such as households, the environments are more structured, products are designed to be easily recognizable, and items are consciously placed to facilitate their detection and manipulation. In this chapter we exploit these properties and propose a mobile robot systems that can be deployed in drugstores and autonomously acquire a semantic digital twin model of the store. This facilitates autonomous robot fetch and place and shopping in a virtual replica of the store. The potential commercial impact is substantial because in the retail business stores are an information blackbox and being able to automate inventory on a regular basis could improve the knowledge of retailers about their business drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beetz, M., Bálint-Benczédi, F., Blodow, N., Nyga, D., Wiedemeyer, T., Marton, Z.C.: Robosherlock: Unstructured information processing for robot perception. In: IEEE International Conference on Robotics and Automation, pp. 1549–1556 (2015)

    Google Scholar 

  2. Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoğlu, A.K., Bartels, G.: Knowrob 2.0–a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: IEEE International Conference on Robotics and Automation, pp. 512–519 (2018)

    Google Scholar 

  3. Beßler, D., Porzel, R., Pomarlan, M., Vyas, A., Höffner, S., Beetz, M., Malaka, R., Bateman, J.: Foundations of the socio-physical model of activities (soma) for autonomous robotic agents. In: Brodaric, B., Neuhaus, F. (eds.) Formal Ontology in Information Systems - Proceedings of the 12th International Conference, Bozen-Bolzano, Italy, September 13-16, 2021, Frontiers in Artificial Intelligence and Applications (2021)

    Google Scholar 

  4. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016). https://doi.org/10.1109/TRO.2016.2624754

    Article  Google Scholar 

  5. Coleman, D., Sucan, I., Chitta, S., Correll, N.: Reducing the barrier to entry of complex robotic software: a MoveIt case study (2014). arXiv:1404.3785

  6. Deeken, H., Wiemann, T., Hertzberg, J.: Grounding semantic maps in spatial databases. Robot. Auton. Syst. 105, 146–165 (2018). https://doi.org/10.1016/j.robot.2018.03.011

  7. Dufour, C., Soghomonian, Z., Li, W.: Hardware-in-the-loop testing of modern on-board power systems using digital twins, pp. 118–123 (2018). https://doi.org/10.1109/SPEEDAM.2018.8445302

  8. Fang, Z., Bartels, G., Beetz, M.: Learning models for constraint-based motion parameterization from interactive physics-based simulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4005–4012 (2016)

    Google Scholar 

  9. Fox, D.: Kld-sampling: adaptive particle filters and mobile robot localization. Adv. Neural. Inf. Process. Syst. 14(1), 26–32 (2001)

    Google Scholar 

  10. Gemignani, G., Capobianco, R., Bastianelli, E., Bloisi, D., Iocchi, L., Nardi, D.: Living with robots: interactive environmental knowledge acquisition. Robot. Auton. Syst. 78, 1–16 (2016). https://doi.org/10.1016/j.robot.2015.11.001

    Article  Google Scholar 

  11. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D lidar slam. In: IEEE International Conference on Robotics and Automation, pp. 1271–1278 (2016)

    Google Scholar 

  12. Hull, R., King, R.: Semantic database modeling: survey, applications, and research issues. ACM Comput. Surv. 19(3), 201–260 (1987). https://doi.org/10.1145/45072.45073

    Article  Google Scholar 

  13. Mandić, M., Tepavv̌ević, B.: Analysis of shape grammar application as a tool for urban design. Environ. Plann. B: Plann. Design 42(4), 675–687 (2015). https://doi.org/10.1068/b130084p

  14. Mania, P., Kenfack, F.K., Neumann, M., Beetz, M.: Imagination-enabled robot perception. In: International Conference on Intelligent Robots and Systems (2021). https://doi.org/10.1109/IROS51168.2021.9636359

  15. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable D18 ontology library (final). Technical Report, IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic Web (2003). http://www.loa.istc.cnr.it/old/DOLCE.html

  16. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview. W3C Recommendation 10(10) (2004)

    Google Scholar 

  17. Pangercic, D., Tenorth, M., Pitzer, B., Beetz, M.: Semantic object maps for robotic housework - representation, acquisition and use. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal (2012)

    Google Scholar 

  18. Pütz, S., Simón, J.S., Hertzberg, J.: Move Base Flex: a highly flexible navigation framework for mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2018). https://github.com/magazino/move_base_flex

  19. Rusu, R.B., Marton, Z.C., Blodow, N., Holzbach, A., Beetz, M.: Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA (2009)

    Google Scholar 

  20. Shearer, R., Motik, B., Horrocks, I.: Hermit: a highly-efficient owl reasoner. Owled 432, 91 (2008)

    Google Scholar 

  21. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)

    Book  Google Scholar 

  22. Stiny, G., Gips, J., Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. In: Segmentation of Buildings for 3DGeneralisation. In: Proceedings of the Workshop on generalisation and multiple representation, Leicester (1971)

    Google Scholar 

  23. Vachálek, J., Bartalskỳ, L., Rovnỳ, O., Šišmišová, D., Morháč, M., Lokšík, M.: The digital twin of an industrial production line within the industry 4.0 concept. In: 21st International Conference on Process Control, pp. 258–262 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Stelter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beetz, M. et al. (2022). Robots Collecting Data: Modelling Stores. In: Villani, L., Natale, C., Beetz, M., Siciliano, B. (eds) Robotics for Intralogistics in Supermarkets and Retail Stores. Springer Tracts in Advanced Robotics, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-031-06078-6_2

Download citation

Publish with us

Policies and ethics