Skip to main content

Control of a Four Degrees of Freedom Robot Using a Sine Cosine Algorithm for Joint Position

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 455))

Included in the following conference series:

  • 879 Accesses

Abstract

This paper needs to use its geometric model to control a planar robot with 4 degrees of freedom (DOFs). When calculating these models, the singularity problem is often encountered. To overcome this problem, we present in this paper a new efficient method to overcome this problem and compute the position of the joints of the 4R robot. This method uses a metaheuristic algorithm and the coordinates of four selected points in the object image to find the desired trajectory. The simulation results are performed using the Sine Cosine Algorithm (SCA). These results show the proposed method’s effectiveness in optimizing the positions of the joints of the 4 DOFs robot to control and find the optimal trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, S., Zhang, K., Herrmann, G.: An adaptive controller for robotic manipulators with unknown kinematics and dynamics. IFAC-PapersOnLine 53, 8796–8801 (2020). https://doi.org/10.1016/j.ifacol.2020.12.1385(2020)

  2. Hubert J.: Manipulateurs parallèles, singularités et analyse statique. Ph.D. thesis, École Nationale Supérieure des Mines de Paris (2010)

    Google Scholar 

  3. Rijalusalam, D.U., Iswanto, I.: Implementation Kinematics modeling and Odometry of four Omni wheel mobile robot on the trajectory planning and motion control based microcontroller. J. Robot. Control 2 (2021). https://doi.org/10.18196/jrc.25121

  4. Tapia, J.G.: Modélisation et identification géométrique de robots utilisés pour des opérations d’usinage. Université Blaise Pascal - Clermont-Ferrand II (2016)

    Google Scholar 

  5. Chang, Y., Li, L., Wang, Y., You, K.: Toward fast convergence and calibration-free visual servoing control: a new image-based uncalibrated finite-time control scheme. IEEE Access 8, 88333–88347 (2020). https://doi.org/10.1109/ACCESS.2020.2993280

    Article  Google Scholar 

  6. Benchora, A., Metchat, A.A.: Conception et réalisation d’un robot à structure parallèle. Ph.D. thesis, M MALTI Abed (2020)

    Google Scholar 

  7. Benchora, A., Metchat, A.A.: Calibrage géométrique d’un robot parallèle. Ph.D. thesis, M MALTI Abed (2020)

    Google Scholar 

  8. Li, W., Cheng, T., Ye, M., et al.: Kinematic modeling and visual servo control of a soft-bodied magnetic anchored and guided endoscope. IEEE/ASME Trans. Mechatron. 25, 1531–1542 (2020). https://doi.org/10.1109/TMECH.2020.2978538

    Article  Google Scholar 

  9. Sabrina, H. : Etude cinématique et géométrique d’un robot à 6 ddl (2020)

    Google Scholar 

  10. Furet, M.: Analyse cinéto-statique de mécanismes de tenségrité: Application à la modélisation de cous d’oiseaux et de manipulateurs bio-inspirés. Ph.D. thesis, Ecole Centrale de Nantes (2020)

    Google Scholar 

  11. Gambhire, S.J., Kishore, D.R., Londhe, P.S., Pawar, S.N.: Review of sliding model-based control techniques for control system applications. Int. J. Dyn. Control 9, 363–378 (2021)

    Article  MathSciNet  Google Scholar 

  12. Alandoli, E.A., Lee, T.S.: A critical review of control techniques for flexible and rigid link manipulators. Robotica 38, 2239–2265 (2020)

    Article  Google Scholar 

  13. El-Hussieny, H., Hameed, I.A., Ryu, J.-H.: Nonlinear model predictive growth control of a plant-inspired, soft-growing robot class. IEEE Access 8, 214495–214503 (2020)

    Article  Google Scholar 

  14. Wang, C., Frazelle, C.G., Wagner, J.R., Walker, I.D.: Dynamic control of multisection three-dimensional continuum manipulators based on virtual discrete-jointed robot models. IEEE/ASME Trans. Mechatron. 26, 777–788 (2020)

    Article  Google Scholar 

  15. Izadbakhsh, A., Khorashadizadeh, S.: Robust adaptive control of robot manipulators using Bernstein polynomials as a universal approximator. Int. J. Robust Nonlinear Control 30, 2719–2735 (2020)

    Article  MathSciNet  Google Scholar 

  16. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019). https://doi.org/10.1016/j.cie.2019.106040

    Article  Google Scholar 

  17. Yang, X.-S.: Harmony search as a metaheuristic algorithm. In: Geem, Z.W. (eds.) Music-Inspired Harmony Search Algorithm. Studies in Computational Intelligence, vol. 191, pp. 1–14. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00185-7_1

  18. Degertekin, S.O.: Improved harmony search algorithms for sizing optimization of truss structures. Comput. Struct. 92, 229–241 (2012)

    Article  Google Scholar 

  19. Hussain, S.F., Pervez, A., Hussain, M.: Co-clustering optimization using Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 97, 106725 (2020)

    Article  Google Scholar 

  20. Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M., Khasawneh, A.M.: Moth–flame optimization algorithm: variants and applications. Neural Comput. Appl. 32(14), 9859–9884 (2019). https://doi.org/10.1007/s00521-019-04570-6

    Article  Google Scholar 

  21. Ebadinezhad, S.: DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem. Eng. Appl. Artif. Intell. 92, 103649 (2020)

    Article  Google Scholar 

  22. Kumar, L., Bharti, K.K.: A novel hybrid BPSO–SCA approach for feature selection. Nat. Comput. 20(1), 39–61 (2019). https://doi.org/10.1007/s11047-019-09769-z

    Article  MathSciNet  Google Scholar 

  23. Mirjalili, S.: SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inssaf Harrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harrade, I., Daoui, A., Kmich, M., Chalh, Z., Sayyouri, M. (2022). Control of a Four Degrees of Freedom Robot Using a Sine Cosine Algorithm for Joint Position. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2022. Lecture Notes in Networks and Systems, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-031-02447-4_81

Download citation

Publish with us

Policies and ethics