Skip to main content

Introduction

  • Chapter
BioNanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Goodsell, Bionanotechnology: Lessons from Nature. Willey-Less, 2004, pp. 1–8 (311), New Jersey, USA.

    Google Scholar 

  2. R. Feynman, There’s Plenty of Room at the Bottom. The Vega Science Trust, December 29th 1959, The American Physical Society at CalTech, California.

    Google Scholar 

  3. R. Feynman, There’s Plenty of Room at the Bottom. 1959 [cited 2006 10/02/2006]; [Transcript]. Available from: https://www.zyvex.com [A website based from Georgia].

  4. (NNI), N.N.i. Nanotechnology: What is Nanotechnology? 2000 [cited 2006 10/2/2006]; Available from: https://www.nano.gov [It is a webpage, place of publication unkonwn].

  5. E. K. Drexler, Nanotechnology Essays: Revolutionizing the Future of Technology [EurekAlert! Incontext]. 2006 [cited 2006 10/02/2006]; Available from: www.eurekalert.org [Washington DC, USA].

  6. R. Baum, “Nanotechnology: Drexler and Smallye make the case for and against molecular assemblers,” Chem. Eng. News, vol. 81, pp. 37–42, 2003.

    Google Scholar 

  7. M. Covington, et al., “Observation of surface-induced broken time-reversal symmetry in YBa2Cu3O7 tunnel junctions,” Phys. Rev. Lett., vol. 79, pp. 277–280, 1997. doi:https://doi.org/10.1103/PhysRevLett.79.277

    Article  Google Scholar 

  8. R. Elghanian, et al., “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles” Science, vol. 277, pp. 1078–1080, 1997. doi:https://doi.org/10.1126/science.277.5329.1078

    Article  Google Scholar 

  9. B. J. Holliday, and M.C. A., “Strategies for the construction of supramolecular compounds through coordination chemistry,” Angew. Chem., Int. Ed., vol. 40, pp. 2022–2043, 2001. doi:https://doi.org/10.1002/1521-3773(20010601)40:112022::AID-ANIE20223.0.CO;2-D

    Article  Google Scholar 

  10. R. Jin, et al., “Photo-induced conversion of silver nanospheres to nanoprisms” Science, vol. 294, pp. 1901–1903, 2001. doi:https://doi.org/10.1126/science.1066541

    Article  Google Scholar 

  11. C. A. Mirkin, et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, vol. 382, pp. 607–609, 1996. doi:https://doi.org/10.1038/382607a0

    Article  Google Scholar 

  12. S. J. Park, T. A. Taton, and C. A. Mirkin, Array-based electrical detection of DNA using nanoparticle probes. Science, 295, pp. 1503–1506, 2002. doi:https://doi.org/10.1126/science.283.5402.661

    Article  Google Scholar 

  13. R. D. Piner, et al., Dip pen nanolithography. Science, vol. 283): pp. 661–663, 1999. doi:https://doi.org/10.1126/science.283.5402.661

  14. J. J. Storhoff, et al., One-Pot Colorimetric Differentiation of Polynucleotides with Single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc., vol. 1209, pp. 1959–1964, 1998. doi:https://doi.org/10.1021/ja972332i

    Article  Google Scholar 

  15. J. J. Storhoff, and C. A. Mirkin, Programmed materials synthesis with DNA. Chem. Rev., vol. 99, pp. 1849–1862, 1999. doi:https://doi.org/10.1021/cr970071p

    Article  Google Scholar 

  16. J. J. Storhoff, R. C. Mucic, and C. A. Mirkin, Strategies for organizing nanoparticles into aggregate structures and functional materials. J. Clust. Sci., vol. 8, pp. 179–216, 1997. doi:https://doi.org/10.1023/A:1022632007869

    Article  Google Scholar 

  17. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science, vol. 289, pp. 1757–1760, 2000. doi:https://doi.org/10.1126/science.289.5485.1757

    Article  Google Scholar 

  18. W.-X. Zhang, Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res., vol. 5(3-4), pp. 323–332, 2003. doi:https://doi.org/10.1023/A:1025520116015

  19. C. Bruce, Nanotechnology: molecular speculations on global abundance, B. C. Crandall, Ed., MIT Press, 1996, pp. 1–5 (226) [Cambridge, MA, USA].

    Google Scholar 

  20. A. Smith, et al., Engineering luminescent quantum dots for invivo molecular and cellular imaging. Ann. Biomed. Eng., vol. 341: pp. 3–14, 2006. doi:https://doi.org/10.1007/s10439-005-9000-9

    Article  Google Scholar 

  21. S. Barik, H. H. Tan, and C. Jagadish, Comparison of InAs quantum dots grown on GaInAsP and InP. Nanotechnology, vol. 17, pp. 1867–1870, 2006. doi:https://doi.org/10.1088/0957-4484/17/8/010

    Article  Google Scholar 

  22. R. Langer, and N. A. Peppas, Advances in biomaterials, drug delivery, and bionanotechnology. Bioeng., Food, Natural Prod.—AIChE, vol. 4912, pp. 2090–3006, 2003.

    Google Scholar 

  23. E. A. Thomson, Microchip Stores, Releases Chemicals for Many Uses. 1999 [cited 2006 10/02/1006]; Available from: www.web.mit.edu.

  24. F. Nano, SWNT Ropes with SWNTProbe. [Bitmap Image] 2005 [cited 2006 10/02/2006]; Available from: www.firstnano.com.

  25. J. Liu, et al., Fullerene crop circles. Nature, vol. 385, pp. 780–781, 1997. doi:https://doi.org/10.1038/385780b0

    Article  Google Scholar 

  26. T. W. Foundation, The Whitaker Foundation 2004 Annual Report: Biomedical Engineering and the Medical Applications of Nanotechnology, The Whitaker Foundation, pp. 1–48, 2004.

    Google Scholar 

  27. D. Misirlis, “Development of a novel drug delivery system based on polymeric, thermoresponsive, hydrogel nanoparticles,” in Institute of Integrated Biosciences, École Polytechnique Fédérale De Lausanne, pp. 1–149, 2005.

    Google Scholar 

  28. W. C. W. Chan, Bionanotechnology progress and advances. Biol. Blood Marrow Transplant., vol. 12, pp. 87–91, 2006. doi:https://doi.org/10.1016/j.bbmt.2005.10.004

  29. C. Q. Sun, et al., Dimension, strength, and chemical and thermal stability of a single C-C bond in carbon nanotubes. J. Phys. Chem. B, vol. 107, pp. 7544–7546, 2003. doi:https://doi.org/10.1021/jp035070h

    Article  Google Scholar 

  30. Z. Ökten, et al., Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol., vol. 11, pp. 884–887, 2004. doi:https://doi.org/10.1038/nsmb815

    Article  Google Scholar 

  31. P. D. Vogel, Nature’s design of nanomotors. Eur. J. Pharm. Biopharm., vol. 60, pp. 267–277, 2005. doi:https://doi.org/10.1016/j.ejpb.2004.10.007

    Article  Google Scholar 

  32. I. L. Medintz, et al., Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater., vol. 2, pp. 630–638, 2003. doi:https://doi.org/10.1038/nmat961

    Article  Google Scholar 

  33. (NNI), N.N.I., NNI Annual Budget for 2007: Supplement to the President’s 2007 Budget, N.S.a.T.C. (NSTC), NNI, pp. 1–76, 2006.

    Google Scholar 

  34. M. C. Roco, The US National Nanotechnology Initiative after 3 years (2001–2003). J. Nanopart. Res., vol. 6, pp. 1–10, 2004. doi:https://doi.org/10.1023/B:NANO.0000023243.25838.73

    Article  Google Scholar 

  35. US, G., The 21st Century National Nanotechnology Research and Development Act. pp. 1–2, 2004.

    Google Scholar 

  36. (NSTC), N.S.a.T.C., National Nanotechnology Initiative and a Global Perspective. “Small Wonders”, Exploring the Vast Potential of Nanoscience, pp. 1–8, 2002.

    Google Scholar 

  37. (WTEC), W.T.E.C., Nanostructure Science and Technology: R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices. [Chapter 12], R.S.H.-P. Williams and G.D.U. Stucky, Eds., pp. 181–201 1998.

    Google Scholar 

  38. R. Lux, The Nanotech Report 2004. 2004 [cited; Available from: https://www.nanoxchange.com/NewsFinancial.asp?ID=264.

  39. M. C. Roco, National Nanotechnology Initiative and a Global Perspective. “Small Wonders”, Exploring the Vast Potential of Nanoscience, 2002, National Science and Technology Council (NSTC), Nanoscience, Engineering and Technology (NSET), pp. 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Papazoglou, E., Parthasarathy, A. (2007). Introduction. In: BioNanotechnology. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-01618-9_1

Download citation

Publish with us

Policies and ethics