Skip to main content

Service Robots and Automation for the Disabled and Nursing Home Care

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

  • 5363 Accesses

Abstract

The rising number of elderly people and people in need of care results in an increased demand of new solutions to support self-initiative and independent living. Robotics and automation technologies have the potential to support and enhance the quality of our lives. This chapter analyzes the needs of persons with disabilities or age-related limitations and discusses possible tasks that new assistive service robots could support. It gives an overview of available products, selected research activities, and future challenges. Existing technologies can be grouped into two main categories: First, stand-alone devices, operated by the user explicitly or even operating (semi-)autonomously such as mobility aids, e.g., wheelchairs and rollators, manipulation aids, interaction platforms, or integrated mobile manipulators. Second, wearable devices that are physically connected with the user and operated implicitly by measuring their desired limb motion such as in orthoses, exoskeletons, or prostheses. Two developments are discussed as application examples: the robotic home assistant “Care-O-bot®” and the KONSENS-NHE exoskeleton for hand habilitation. An important future challenge in order to make robotic technologies available for everybody is to reduce their costs. On the technological side, user interfaces that allow teaching new tasks to assistive robots easily need to be designed. Finally, safe manipulation of assistive robots among humans must be guaranteed by new sensors and compliance with corresponding safety standards. For active orthoses and exoskeletons, challenges are the achievement of an adequate weight-to-benefit ratio and the design of reliable human-machine interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Statistisches Bundesamt Destatis, Germany. https://de.statista.com/statistik/daten/studie/1365/umfrage/bevoelkerung-deutschlands-nach-altersgruppen/. Accessed 2 Oct 2020

  2. Pigini, L., Facal, D., Blasi, L., Andrich, R.: Service robots in elderly care at home: users’ needs and perceptions as a basis for concept development. Technol. Disabil. 24, 303–311 (2012). https://doi.org/10.3233/TAD-120361

    Article  Google Scholar 

  3. Cakmak, M., Takayama, L.: Towards a comprehensive chore list for domestic robots. In: Proceedings of the 8th ACM/IEEE international conference on human-robot interaction HRI’13, p. 93 (2013)

    Google Scholar 

  4. Müller, C., Graf, B., Pfeiffer, K., Bieller, S., Kutzbach, N., Röhricht, K.: World robotics 2020 – service robots. IFR Statistical Department (VDMA Services GmbH, Frankfurt am Main, Germany) (2020)

    Google Scholar 

  5. Bieber, G., Chodan, W., Bader, R., Hölle, B., Herrmann, P., Dreher, I.: RoRo: a new robotic rollator concept to assist the elderly and caregivers. In: Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive Environments (PETRA ’19), p. 430. Association for Computing Machinery, New York

    Google Scholar 

  6. Rüegg P.: A smart walking aid. https://ethz.ch/en/news-and-events/eth-news/news/2016/02/smart-walking-aid%20.html (2016). Accessed 13 Nov 2020

  7. Vo, T.G., Kilian, S.: Service assistant to support the elderly with mobility issues. In: International PHD Conference on Safe and Social Robots 2018, pp. 84

    Google Scholar 

  8. Shieber, J.: WHILL brings its autonomous wheelchairs to North American airports. https://techcrunch.com/2019/11/20/whill-brings-its-autonomous-wheelchairs-to-north-american-airports/ (2019). Accessed 13 Nov 2020

  9. Collins, K.: Segway’s Wall-E egg chair made me feel like royalty. https://www.cnet.com/news/segways-wall-e-egg-chair-made-me-feel-like-royalty/ (2020). Accessed 17 May 2021

  10. Vogel, B.: The iBot is back. Is the second time the charm? https://www.newmobility.com/2019/07/the-ibot-is-back/ (2019). Accessed 13 Nov 2020

  11. Toyota i-foot Robot. https://thefutureofthings.com/5258-toyota-i-foot-robot/ (2020). Accessed 13 Nov 2020

  12. Gibson, M.: Meet the robot chef that can prepare your dinner. Time Magazine. http://time.com/3819525/robot-chef-moley-robotics/ (2015). Accessed 13 Nov 2020

  13. Vogel, J., Hagengruber, A., Iskandar, M., Quere, G., Leipscher, U., Bustamante, S., Dietrich, A., Höppner, H., Leidner, D., Albu-Schäffer, A.: EDAN – an EMG-controlled daily assistant to help people with physical disabilities. Paper accepted for publication at 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, Oct 2020

    Google Scholar 

  14. Accenture and Intel support neuromorphic research project to develop robotic arm for wheelchair-bound pediatric patients. https://www.businesswire.com/news/home/20200819005079/en/Accenture-and-Intel-Support-Neuromorphic-Research-Project-to-Develop-Robotic-Arm-for-Wheelchair-Bound-Pediatric-Patients (2020). Accessed 13 Nov 2020

  15. Der smarte Begleiter für zu Hause: Home-Care-Robot medisana temi feiert Premiere auf der IFA 2019. https://www.medisana.de/Der-smarte-Begleiter-fuer-zu-Hause-Home-Care-Robot-medisana-temi-feiert-Premiere-auf-der-IFA-2019/?force_sid=1gdn13c5kecivugcvnme8f3ucm (2019). Accessed 13 Nov 2020

  16. Graf, F., Odabasi, C., Jacobs, T., Graf, B., Födisch, T.: MobiKa – low-cost mobile robot for human-robot interaction. In: 28th IEEE International Conference on Robot and Human Interactive Communication, ROMAN 2019, New Delhi, India. IEEE, Piscataway (2019)

    Google Scholar 

  17. Meisenzahl, M.: An Indian hospital is using robots with thermal cameras to screen coronavirus patients – here’s how they work. https://www.businessinsider.com/india-coronavirus-robot-uses-thermal-camera-to-take-temperature-2020-5?r=DE&IR=T (2020). Accessed 13 Nov 2020

  18. Ingham, L.: Telepresence robots make lockdown graduation a reality for student. https://www.verdict.co.uk/telepresence-robots-graduation-students/ (2020). Accessed 13 Nov 2020

  19. Ackermann, E.: UBTECH shows off massive upgrades to Walker Hu-manoid Robot. IEEE Spectrum. https://spectrum.ieee.org/automaton/robotics/humanoids/ubtech-upgrades-walker-humanoid-robot (2019). Accessed 13 Nov 2020

  20. Ackermann, E.: TALOS humanoid now available from PAL robotics. IEEE Spectrum. https://spectrum.ieee.org/automaton/robotics/humanoids/talos-humanoid-now-available-from-pal-robotics (2017). Accessed 13 Nov 2020

  21. Millard, M., Sreenivasa, M., Mombaur, K.: Predicting the motions and forces of wearable robotic systems using optimal control. Front. Robot. AI. (2017). https://doi.org/10.3389/frobt.2017.00041

  22. Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G., Collins, S.H.: Human-in-the-loop optimization of exoskeleton assistance during walking. Science. (2017). https://doi.org/10.1126/science.aal5054

  23. Bates, T.J., Fergason, J.R., Pierrie, S.N.: Technological advances in prosthesis design and rehabilitation following upper extremity limb loss. Curr. Rev. Musculoskelet. Med. (2020). https://doi.org/10.1007/s12178-020-09656-6

  24. Cheng, J., Tillery, S.H., Miguelez, J., Lachapelle, J., Keefer, E.: Dexterous hand control through fascicular targeting (HAPTIX-DEFT). J. Hand Surg. (2017). https://doi.org/10.1016/j.jhsa.2017.06.030

  25. Musk, E.: An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. (2019). https://doi.org/10.2196/16194

  26. Pisarchik, A.N., Maksimenko, V.A., Hramov, A.E.: From novel technology to novel applications: comment on “an integrated brain-machine interface platform with thousands of channels” by Elon Musk and Neuralink. J. Med. Internet Res. (2019). https://doi.org/10.2196/16356

  27. Fourneret, É.: The hybridization of the human with brain implants: the Neuralink project. Camb. Q. Healthc. Ethics. (2020). https://doi.org/10.1017/S0963180120000419

  28. Sreenivasan, N., Ulloa Gutierrez, D.F., Bifulco, P., Cesarelli, M., Gunawardana, U., Gargiulo, G.D.: Towards ultra low-cost myoactivated prostheses. BioMed Res. Intl. (2018). https://doi.org/10.1155/2018/9634184

  29. Santana, J.P., Beltran, K., Barocio, E., Lopez-Avina, G.I., Huegel, J.C.: GHTC 2018. In: 2018 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, p. 1. IEEE, Piscataway, 2018

    Google Scholar 

  30. Hans, M., Graf, B., Schraft, R.D.: Robotic home assistant Care-O-bot: past-present-future. In: Proc. IEEE international workshop on robot and human interactive communication (RoMan), pp. 407–411. Paris, 2001

    Google Scholar 

  31. Graf, B., Parlitz, C., Hägele, M.: Robotic home assistant Care-O-bot® 3 product vision and innovation platform. In: Human-Computer Interaction – HCI International 2009 / DVD: Interaction Design and Usability. 13th International Conference, San Diego, CA, USA, July 19–24, 2009. Proceedings and Posters. Berlin u.a.: Springer, S. 312–320 (Lecture Notes in Computer Science 5610–5624), 2009

    Google Scholar 

  32. Kittmann, R., Fröhlich, T., Schäfer, J., Reiser, U., Weißhardt, F., Haug, A.: Let me introduce myself: i am Care-O-bot 4, a gentleman robot. In: Mensch und Computer 2015: Proceedings. de Gruyter, Berlin, New York, 6–9 Sept 2015

    Google Scholar 

  33. Jacobs, T., Graf, B.: Practical evaluation of service robots for support and routine tasks in an elderly care facility. In: Buss, M. (General Chair); IEEE / Robotics and Automation Society u.a.: IEEE Workshop on Advanced Robotics and its Social Impacts – ARSO 2012. Munich, Germany, 21–23 May 2012

    Google Scholar 

  34. Mast, M., Burmester, M., Krüger, K., Fatikow, S., Arbeiter, G., Graf, B., Kronreif, G., Pigini, L., Facal, D., Qiu, R.: User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home. J. Human-Robot Interact. 1(1), 96–118 (2012)

    Article  Google Scholar 

  35. Lange, C., Ziese, T.: Daten und Fakten: Ergebnisse der Studie “Gesundheit in Deutschland aktuell 2009”. Robert-Koch-Institut, Berlin (2011)

    Google Scholar 

  36. Hyakutake, K., Morishita, T., Saita, K., Fukuda, H., Shiota, E., Higaki, Y., Inoue, T., Uehara, Y.: Effects of home-based robotic therapy involving the single-joint hybrid assistive limb robotic suit in the chronic phase of stroke: a pilot study. BioMed Res. Intl. (2019). https://doi.org/10.1155/2019/5462694

  37. Kang, B.B., Choi, H., Lee, H., Cho, K.-J., Exo-Glove Poly, I.I.: A polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. (2019). https://doi.org/10.1089/soro.2018.0006

  38. Bützer, T.: ETH Zurich, 2019

    Google Scholar 

  39. Wu, K.-Y., Su, Y.-Y., Yu, Y.-L., Lin, C.-H., Lan, C.-C.: A 5-degrees-of-freedom lightweight elbow-wrist exoskeleton for forearm fine-motion rehabilitation. IEEE/ASME Trans. Mechatron. (2019). https://doi.org/10.1109/TMECH.2019.2945491

  40. Hasegawa, Y., Mikami, Y., Watanabe, K., Sankai, Y.: In: IEEE International Conference on Robotics and Automation (ICRA), 2008. Pasadena, CA, USA, 5/19/2008–5/23/2008, p. 718. IEEE, Piscataway, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Graf .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 570381 kb)

(MP4 197697 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graf, B., Eckstein, J. (2023). Service Robots and Automation for the Disabled and Nursing Home Care. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_62

Download citation

Publish with us

Policies and ethics