Skip to main content

An Interface for Audio Control Using Gesture Recognition and IMU Data

  • Conference paper
  • First Online:
Trends in Artificial Intelligence and Computer Engineering (ICAETT 2021)

Abstract

Hand Gesture Recognition systems using electromyography sensors in conjunction with data from inertial measurement units are currently largely used for musical interfaces. However, bracelets are susceptible to displacements causing a decrease in the accuracy when they are used in such applications. In this study, a hand gesture recognition model applied to a musical interface has been tested using two different commercial armbands, Myo and GForce. Both armbands use the same pre-trained gesture recognition model and same hand gestures are recognized. We evaluate the robustness of the pre-trained model and the reached accuracy correcting the displacement of the sensors. The test performed to evaluate the system shows a classification accuracy of 94.33% and 90.70% respectively considering the same pre-trained model. The accuracy results obtained with both sensors are similar which evidences the robustness of the tested model and the importance of correcting the displacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jaramillo-Yánez, A., Benalcázar, M., Mena-Maldonado, E.: Real-time hand gesture recognition using surface electromyography and machine learning a systematic literature review. Sensors 20, 2467 (2020). https://doi.org/10.3390/s20092467

  2. Archer, D.: Unspoken diversity cultural differences in gestures. Qual. Soc. 20, 79–105 (1997). https://doi.org/10.1023/A:1024716331692

    Article  Google Scholar 

  3. Bermeo-Calderon, J., Velasco, M., Rojas, J., Villarreal-Lopez, J., Resrepo, E.: Movement control system for a transradial prosthesis using myoelectric signals. In: International Conference on Advanced Engineering Theory and Applications, pp. 273–282 (2019). ISBN: 978-3-030-53021-1

    Google Scholar 

  4. Lu, L., Mao, J., Wang, W., Ding, G., Zhang, Z.: A study of personal recognition method based on EMG signal. IEEE Trans. Biomed. Circuits Syst. 14, 681–691 (2020)

    Article  Google Scholar 

  5. Tavakoli, M., Benussi, C., Lourenco, J.: Single channel surface EMG control of advanced prosthetic hands a simple, low cost and efficient approach. Expert Syst. Appl. 79, 322–332 (2017). https://doi.org/10.1016/j.eswa.2017.03.012

  6. Ullah, A., Ali, S., Khan, I., Khan, M., Faizullah, S.: Effect of analysis window and feature selection on classification of hand movements using EMG signal. In: Proceedings of SAI Intelligent Systems Conference, pp. 400–415 (2020). ISBN: 978-3-030-55190-2

    Google Scholar 

  7. Viriyasaksathian, B., Khemmachotikun, S., Kaimuk, P., Wongsawat, Y.: EMG-based upper-limb rehabilitation via music synchronization with augmented reality. In: 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, pp. 2856–2859 (2011). https://doi.org/10.1109/ROBIO.2011.6181738

  8. Wang, N., Lao, K., Zhang, X.: Design and myoelectric control of an anthropomorphic prosthetic hand. J. Bionic Eng. 14, 47–59 (2017). https://doi.org/10.1016/S1672-6529(16)60377-3

  9. Donnarumma, M., Caramiaux, B., Tanaka, A.: Muscular interactions combining EMG and MMG sensing for musical practice. In: KAIST (2013)

    Google Scholar 

  10. Tsubouchi, Y., Suzuki, K.: BioTones a wearable device for EMG auditory biofeedback. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6543–6546 (2010)

    Google Scholar 

  11. Kerber, F., Lessel, P., Kruger, A.: Same-side hand interactions with arm-placed devices using EMG. In: Proceedings Of The 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1367–1372 (2015)

    Google Scholar 

  12. Tanaka, A., Knapp, R.: Multimodal interaction in music using the electromyogram and relative position sensing. In: NIME 2002 (2002)

    Google Scholar 

  13. Von Zezschwitz, E., et al.: An overview of current trends, developments, and research in human-computer interaction (2014). ISSN: 1862-5207

    Google Scholar 

  14. Benson, C., Manaris, B., Stoudenmier, S., Ward, T.: SoundMorpheus a myoelectric-sensor based interface for sound spatialization and shaping. In: NIME, pp. 332–337 (2016)

    Google Scholar 

  15. Nymoen, K., Haugen, M., Jensenius, A.: MuMYO-evaluating and exploring the MYO armband for musical interaction. Louisiana State University (2015)

    Google Scholar 

  16. Xiao, Z., Chhatre, N., Kuatsjah, E., Menon, C.: Towards an FMG based augmented musical instrument interface. In: 2018 IEEE 9th Annual Information Technology, Electronics And Mobile Communication Conference (IEMCON), pp. 582–587 (2018)

    Google Scholar 

  17. Cui, X.: Interactive platform of gesture and music based on MYO armband and processing. J. Phys. Conf. Seri. 1288, 012010 (2019)

    Google Scholar 

  18. Di Donato, B., Dooley, J., Hockman, J., Hall, S.: MyoSpat a hand-gesture controlled system for sound and light projections manipulation (2017)

    Google Scholar 

  19. Wynnychuk, J., Porcher, R., Brajovic, L., Brajovic, M., Platas, N.: sutoolz 1.0 alpha 3D software music interface. In: Proceedings of the 2002 Conference on New Interfaces for Musical Expression, pp. 1–2 (2002)

    Google Scholar 

  20. Barona López, L., et al.: An energy-based method for orientation correction of EMG bracelet sensors in hand gesture recognition systems. Sensors 20, 6327 (2020)

    Article  Google Scholar 

  21. Vimos, V., Benalcázar, M., Oña, A., Cruz, P.: A novel technique for improving the robustness to sensor rotation in hand gesture recognition using SEMG. In: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI), pp. 226–243 (2019)

    Google Scholar 

  22. Benalcazar, M., Barona, L., Valdivieso, L., Aguas, X., Zea, J.: EMG-EPN-612 hand gestures dataset (2020). https://doi.org/10.5281/zenodo.4023305

  23. Intelligence, A. & Computer Vision Research Lab, Q. EMG-EPN-612 (2020). https://laboratorio-ia.epn.edu.ec/es/recursos/dataset/2020_emg_dataset_612

  24. Intelligence, A. & Computer Vision Research Lab, E. Code for the paper An Audio Control Interface Using Hand Gesture Recognition and IMU Data (2021). https://github.com/laboratorioAI/EMG_EPN_SOUND_MIX

  25. Reig Albiñana, D.: Implementaci’on de Algoritmos para la Extracci’on de Patrones Caracter’isticos en Sistemas de Reconocimiento De Voz en Matlab (2015)

    Google Scholar 

  26. Hudgins, B., Parker, P., Scott, R.: A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94 (1993). https://doi.org/10.1109/10.204774

  27. Feldman, M.: Hilbert transform, envelope, instantaneous phase, and frequency. Encycl. Struct. Health Monit. (2009). https://doi.org/10.1002/9780470061626.shm046

    Article  Google Scholar 

  28. Winarno, H., Poernama, A., Soesanti, I., Nugroho, H.: Evaluation on EMG electrode reduction in recognizing the pattern of hand gesture by using SVM method. J. Phys. Conf. Seri. 1577, 012044 (2020)

    Google Scholar 

  29. Zhang, Z., Tang, Y., Zhao, S., Zhang, X.: Real-time surface EMG pattern recognition for hand gestures based on support vector machine. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1258–1262 (2019)

    Google Scholar 

  30. Vapnik, V.: Statistics for engineering and information science. Nat. Stat. Learn. Theory (2000)

    Google Scholar 

  31. Paul, Y., Goyal, V., Jaswal, R.: Comparative analysis between SVM & KNN classifier for EMG signal classification on elementary time domain features. In: 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 169–175 (2017)

    Google Scholar 

  32. Hasan, M.: Comparison between kNN and SVM for EMG signal classification. Int. J. Recent Innov. Trends Comput. Commun. 3, 6799–6801 (2015)

    Google Scholar 

  33. Senturk, Z., Bakay, M.: Machine learning based hand gesture recognition via EMG data. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 10 (2021). https://doi.org/10.14201/ADCAIJ2021102123136

  34. Benalcázar, M., Anchundia, C., Zea, J., Zambrano, P., Jaramillo, A., Segura, M.: Real-time hand gesture recognition based on artificial feed-forward neural networks and EMG. In: European Signal Processing Conference, pp. 1492–1496, September 2018. https://doi.org/10.23919/EUSIPCO.2018.8553126

  35. Reaper Reaper-Digital Audio Workstation (2020). https://www.reaper.fm/

  36. Control, O. Open Sound Control (2021). http://opensoundcontrol.org/

  37. Intelligence, A. & Computer Vision Research Lab, E. Configuration video for the proposed Music Control Interface using HGR (2021). https://www.youtube.com/watch?v=2CcTPGCVHiI&ab_channel=ArtificialIntelligenceResearchLab

  38. Intelligence, A. & Computer Vision Research Lab, E. Code for the paper An Energy-Based Method for Orientation Correction of EMG Bracelet Sensors in Hand Gesture Recognition Systems (2020). https://github.com/laboratorioAI/2020_ROT_SVM_EPN

  39. Intelligence, A. & Computer Vision Research Lab, E. Demo video for the proposed Music Control Interface using HGR (2021). https://www.youtube.com/watch?v=IKiI3JAoi3k&ab_channel=ArtificialIntelligenceResearchLab

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Unidad de Innovacion y Tecnologia (UITEC) - Universidad de las Americas (UDLA) for the development of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Vimos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vimos, V.H., Valdivieso Caraguay, Á.L., Barona López, L.I., Pozo Espín, D., Benalcázar, M.E. (2022). An Interface for Audio Control Using Gesture Recognition and IMU Data. In: Botto-Tobar, M., S. Gómez, O., Rosero Miranda, R., Díaz Cadena, A., Montes León, S., Luna-Encalada, W. (eds) Trends in Artificial Intelligence and Computer Engineering. ICAETT 2021. Lecture Notes in Networks and Systems, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-96147-3_14

Download citation

Publish with us

Policies and ethics