Skip to main content

Analysis of Linear Partial Differential Equations Using Convex Optimization

  • Chapter
  • First Online:
Accounting for Constraints in Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 12))

  • 318 Accesses

Abstract

We propose a framework for the exponential stability analysis for a large class of linear Partial Differential Equations (PDEs). The class of PDEs studied are parameterized by polynomial data. The class contains parabolic, first and second order hyperbolic, partial integro-differential equations, and systems coupled in-domain and on the boundaries. The proposed method is numerically tractable since we formulate the analysis test as a convex optimization problem. We use polynomial positive semi-definite matrices, the fundamental theorem of calculus, and the Green’s theorem to reduce the analysis problem to the construction and verification of integral inequalities on Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For brevity we have dropped the temporal dependency of w.

References

  1. A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P.A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB (2013). arXiv:1310.4716, http://www.eng.ox.ac.uk/control/sostools

  2. F. Argomedo, C. Prieur, E. Witrant, S. Brémond, A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients. IEEE Trans. Autom. Control 58, 290–303 (2013)

    Article  MathSciNet  Google Scholar 

  3. G. Blekherman, P.A. Parrilo, And R (SIAM, Thomas. Semidefinite Optimization and Convex Algebraic Geometry, 2012)

    Google Scholar 

  4. F. Bucci, I. Lasiecka, Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions. Calc. Var. Partial Differ. Equ. 37, 217–235 (2010)

    Article  MathSciNet  Google Scholar 

  5. F. Castillo, E. Witrant, C. Prieur, L. Dugard, Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control. Automatica 49, 3180–3188 (2013)

    Article  MathSciNet  Google Scholar 

  6. R. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21. (Springer Science & Business Media, 2012)

    Google Scholar 

  7. R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Anal. Appl. 32, 610–616 (1970)

    Google Scholar 

  8. F. Di Meglio, R. Vazquez, M. Krstic, Stabilization of a system of \( n+ 1\) coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Autom. Control 58, 3097–3111 (2013)

    Article  MathSciNet  Google Scholar 

  9. N. El-Farra, A. Armaou, P. Christofides, Analysis and control of parabolic PDE systems with input constraints. Automatica 39, 715–725 (2003)

    Article  MathSciNet  Google Scholar 

  10. W. Evans, Partial Differential Equations (Wiley Online Library, 1988)

    Google Scholar 

  11. E. Fridman, Y. Orlov, An LMI approach to \(H_\infty \) boundary control of semilinear parabolic and hyperbolic systems. Automatica 45, 2060–2066 (2009)

    Article  MathSciNet  Google Scholar 

  12. A. Gahlawat, M. Peet, A convex sum-of-squares approach to analysis, state feedback and output feedback control of parabolic PDEs. IEEE Trans. Autom. Control 62, 1636–1651 (2017)

    Article  MathSciNet  Google Scholar 

  13. A. Gahlawat, G. Valmorbida, A semi-definite programming approach to stability analysis of linear partial differential equations, in Proceedings of the 56th IEEE Conference on Decision and Control, pp. 1882–1887 (2017)

    Google Scholar 

  14. P. Goulart, S. Chernyshenko, Global stability analysis of fluid flows using sum-of-squares. Physica D: Nonlinear Phenomena 241, 692–704 (2012)

    Article  MathSciNet  Google Scholar 

  15. A. Halanay, V. Rasvan, Stability radii for some propagation models. IMA J. Math. Control Inf. 14, 95–107 (1997)

    Article  MathSciNet  Google Scholar 

  16. C. Jin, Analyse de stabilité de systèmes à coefficients dépendant du retard. Ph.D. thesis, Université Paris-Saclay (2017)

    Google Scholar 

  17. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Courier Corporation, 2012)

    Google Scholar 

  18. M. Krstic, A. Siranosian, A. Smyshlyaev, Backstepping boundary controllers and observers for the slender Timoshenko beam: Part I-Design, in Proceedings of the American Control Conference, pp. 2412–2417 (2006)

    Google Scholar 

  19. M. Krstic, A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs—Part I: Lyapunov design. IEEE Trans. Autom. Control 53, 1575–1591 (2008)

    Article  Google Scholar 

  20. J. Lofberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289 (2005)

    Google Scholar 

  21. T. Meurer, A. Kugi, Tracking control for boundary controlled parabolic PDEs with varying parameters: combining backstepping and differential flatness. Automatica 45(5), 1182–1194 (2009)

    Article  MathSciNet  Google Scholar 

  22. A. Movchan, The direct method of Liapunov in stability problems of elastic systems. J. Appl. Math. Mech. 23, 686–700 (1959)

    Article  MathSciNet  Google Scholar 

  23. A. Paranjape, J. Guan, S. Chung, M. Krstic, PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans. Robot. 29, 625–640 (2013)

    Article  Google Scholar 

  24. S. Prajna, A. Papachristodoulou, P. Parrilo, Introducing sostools: a general purpose sum of squares programming solver, in Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746 (2002)

    Google Scholar 

  25. A. Smyshlyaev, M. Krstic, Adaptive boundary control for unstable parabolic PDEs—Part II: estimation-based designs. Automatica 43, 1543–1556 (2007)

    Article  MathSciNet  Google Scholar 

  26. A. Smyshlyaev, M. Krstic, Adaptive boundary control for unstable parabolic PDEs—Part III: output feedback examples with swapping identifiers. Automatica 43, 1557–1564 (2007)

    Article  MathSciNet  Google Scholar 

  27. J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Google Scholar 

  28. G. Valmorbida, M. Ahmadi, A. Papachristodoulou, Stability analysis for a class of partial differential equations via semidefinite programming. IEEE Trans. Autom. Control 61, 1649–1654 (2016)

    Article  MathSciNet  Google Scholar 

  29. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM 38, 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  30. E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. Mazon, O. Barana, P. Moreau, A control-oriented model of the current profile in tokamak plasma. Plasma Phys. Control. Fusion 49, 1075 (2007)

    Article  Google Scholar 

  31. M. Yamashita, K. Fujisawa, M. Kojima, Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18, 491–505 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Valmorbida .

Editor information

Editors and Affiliations

Appendices

Appendix 1

The following technical lemmas are used throughout the chapter.

Lemma 6.1

For any \(\alpha ,\beta \in \mathbb {N}\) and Lebesgue integrable functions

\(K_1: \overline{\varOmega } \rightarrow \mathbb {R}^{\beta (\alpha +1) \times \beta (\alpha +1)}\) and \(K_2: \underline{\varOmega } \rightarrow \mathbb {R}^{\beta (\alpha +1) \times \beta (\alpha +1)}\), the following identity holds

$$\begin{aligned}&\int _0^1 \int _0^x w_\alpha (x)^T K_1(x,y) w_\alpha (y)dy dx + \int _0^1 \int _x^1 w_\alpha (x)^T K_2(x,y) w_\alpha (y)dy dx \\&= {{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ K_1(x,y) + K_2(y,x)^T \right] w_\alpha (y) d\varDelta , \end{aligned}$$

for all \(w \in \mathscr {H}^\alpha \left( [0,1];\mathbb {R}^\beta \right) \).

Proof

We have

$$\begin{aligned} \int _0^1 \int _0^x w_\alpha (x)^T K_1(x,y) w_\alpha (y)dy dx&= \int _0^1 \int _0^x w_\alpha (y)^T K_1(x,y)^T w_\alpha (x)dy dx \\&= \int _0^1 \int _y^1 w_\alpha (y)^T K_1(x,y)^T w_\alpha (x)dx dy \\&= \int _0^1 \int _x^1 w_\alpha (x)^T K_1(y,x)^T w_\alpha (y)dy dx, \end{aligned}$$

where we first transposed the integrand, followed by a change of order of integration and finally switched between the variables x and y. Thus

$$\begin{aligned}&\int _0^1 \int _0^x w_\alpha (x)^T K_1(x,y) w_\alpha (y)dy dx \\&= {{\frac{1}{2}}} \int _0^1 \int _0^x w_\alpha (x)^T K_1(x,y) w_\alpha (y)dy dx + {{\frac{1}{2}}} \int _0^1 \int _x^1 w_\alpha (x)^T K_1(y,x)^T w_\alpha (y)dy dx \\&= {{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ K_1(x,y)\right] w_\alpha (y)d\varDelta . \end{aligned}$$

Following the same steps for

$$\begin{aligned} \int _0^1 \int _x^1 w_\alpha (x)^T K_2(x,y) w_\alpha (y)dy dx, \end{aligned}$$

then completes the proof.    \(\blacksquare \)

Lemma 6.2

For any \(v \in \mathscr {L}_2\left( [0,1];\mathbb {R}^\beta \right) \), \(\alpha ,\beta \in \mathbb {N}\), and polynomials \(F_1,G_1,F_2,G_2 \in \mathscr {R}^{\beta \times \beta }[(x,y)]\), the following identity holds

$$\begin{aligned}&\int _0^1 \left( \int _0^x F_1(x,y)v(y)dy + \int _x^1 F_2(x,y)v(y)dy \right) ^T \nonumber \\&\times \left( \int _0^x G_1(x,y)v(y)dy + \int _x^1 G_2(x,y)v(y)dy \right) dx = {{\frac{1}{2}}} \int _\varDelta v(x)^T \varGamma \left[ K \right] v(y) d\varDelta , \end{aligned}$$
(36)

where

$$\begin{aligned} K(x,y)=&\int _0^y \left( F_2(z,x)^T G_2(z,y) + G_2(z,x)^T F_2(z,y) \right) dz \\&+ \int _y^x \left( F_2(z,x)^T G_1(z,y) + G_2(z,x)^T F_1(z,y) \right) dz \\&+ \int _x^1 \left( F_1(z,x)^T G_1(z,y) + G_1(z,x)^T F_1(z,y) \right) dz. \end{aligned}$$

Proof

We begin by observing that the left hand side of (36) may be written as

$$\begin{aligned} \langle {\mathscr {F} v},{\mathscr {G} v}\rangle _{\mathscr {L}_2}=\langle { v},{\mathscr {F}^\star \mathscr {G} v}\rangle _{\mathscr {L}_2}, \end{aligned}$$
(37)

where the linear bounded operators on \(\mathscr {L}_2\left( [0,1];\mathscr {R}^\beta \right) \) are defined as

$$\begin{aligned} \left( \mathscr {F} v \right) (x)=&\int _0^x F_1(x,y)v(y)dy + \int _x^1 F_2(x,y)v(y)dy,\\ \left( \mathscr {G} v \right) (x)=&\int _0^x G_1(x,y)v(y)dy + \int _x^1 G_2(x,y)v(y)dy, \end{aligned}$$

and where the Hilbert adjoint of the operator \(\mathscr {F}\) is given by

$$\begin{aligned} \left( \mathscr {F}^\star v \right) (x)= \int _0^x F_2(y,x)^T v(y)dy + \int _x^1 F_1(y,x)^T v(y)dy. \end{aligned}$$

Now, using the fact that

$$\begin{aligned} \left( \mathscr {G} v \right) (y)= \int _0^y G_1(y,z)v(z)dz + \int _y^1 G_2(y,z)v(z)dz, \end{aligned}$$

we get

$$\begin{aligned} \left( \mathscr {F}^\star \mathscr {G} v \right) (x)=&\int _0^x F_2(y,x)^T \left( \mathscr {G} v \right) (y)dy + \int _x^1 F_1(y,x)^T \left( \mathscr {G} v \right) (y)dy \nonumber \\ =&\sum _{i=1}^4 \varTheta _i(x), \end{aligned}$$
(38)

where

$$\begin{aligned} \varTheta _1(x)=&\int _0^x \int _0^y F_2(y,x)^T G_1(y,z)v(z)dz dy,\\ \varTheta _2(x)=&\int _0^x \int _y^1 F_2(y,x)^T G_2(y,z)v(z)dz dy,\\ \varTheta _3(x)=&\int _x^1 \int _0^y F_1(y,x)^T G_1(y,z)v(z)dz dy,\\ \varTheta _4(x)=&\int _x^1 \int _y^1 F_1(y,x)^T G_2(y,z)v(z)dz dy. \end{aligned}$$

In each of the \(\varTheta _i(x)\) we change the order of integration and switch between the variables y and z to obtain

$$\begin{aligned} \varTheta _1(x)=&\int _0^x \int _y^x F_2(z,x)^T G_1(z,y)dz v(y)dy,\\ \varTheta _2(x)=&\int _0^x \int _0^y F_2(z,x)^T G_2(z,y)dz v(y)dz + \int _x^1 \int _0^x F_2(z,x)^T G_2(z,y)dz v(y)dy,\\ \varTheta _3(x)=&\int _0^x \int _x^1 F_1(z,x)^T G_1(z,y)dz v(y)dy + \int _x^1 \int _y^1 F_1(z,x)^T G_1(z,y)dz v(y)dy,\\ \varTheta _4(x)=&\int _x^1 \int _x^y F_1(z,x)^T G_2(z,y)dz v(y)dz. \end{aligned}$$

Substituting into (38) and consequently in (36) we get

$$\begin{aligned} \langle {\mathscr {F}v},{\mathscr {G}v}\rangle =&\int _0^1 \int _0^x v(x) K_1(x,y)v(y)dy dx +\int _0^1 \int _x^1 v(x) K_2(x,y)v(y)dy dx, \end{aligned}$$
(39)

where

$$\begin{aligned} K_1(x,y)=&\int _0^y F_2(z,x)^TG_2(z,y)dz + \int _y^x F_2(z,x)^T G_1(z,y)dz \\&+ \int _x^1 F_1(z,x)^T G_1(z,y)dz,\\ K_2(x,y)=&\int _0^x F_2(z,x)^T G_2(z,y)dz + \int _x^y F_1(z,x)^T G_2(z,y)dz \\&+ \int _y^1 F_1(z,x)^T G_1(z,y)dz. \end{aligned}$$

Then, applying Lemma 6.1 to (39) completes the proof.    \(\blacksquare \)

Remark 1

Lemma 6.2 also holds for any \(v \in \mathscr {H}^\alpha \left( [0,1];\mathbb {R}^\beta \right) \), \(F_1,G_1,F_2,G_2 \in \mathscr {R}^{\beta (\alpha +1) \times \beta (\alpha +1)}[(x,y)]\) and with v(x) replaced by \(v_\alpha (x)\) in (36).

Appendix 2

We now present the proofs of the various results stated in the chapter. We begin with the proof of our assertion that (4) can be written in the form presented in (5).

Let us write the integral expression in (3) asFootnote 1

$$\begin{aligned} \mathscr {V}(w)={{\frac{1}{2}}} \langle {\varXi w},{ w}\rangle _{\mathscr {L}_2}, \end{aligned}$$
(40)

where the self-adjoint operator \(\varXi \) on \(\mathscr {L}_2\left( [0,1];\mathscr {R}^\beta \right) \) is defined as

$$\begin{aligned} \left( \varXi w \right) (x)=&T_b(x) w(x) + \int _0^x \bar{T}(x,y)w(y)dy + \int _x^1 \bar{T}(y,x)^T w(y)dy. \end{aligned}$$

Since the operator \(\varXi \) is self-adjoint, we may use (2) to obtain

$$\begin{aligned} {\partial _{t}}\mathscr {V}(w) =&{{\frac{1}{2}}} \langle {\varXi {\partial _{t}}w},{ w}\rangle _{\mathscr {L}_2} + {{\frac{1}{2}}} \langle {\varXi w},{ {\partial _{t}}w}\rangle _{\mathscr {L}_2} \\ =&{{\frac{1}{2}}} \langle {\varXi w},{ {\partial _{t}}w}\rangle _{\mathscr {L}_2} + {{\frac{1}{2}}} \langle {\varXi w},{ {\partial _{t}}w}\rangle _{\mathscr {L}_2} \\ =&\langle {\varXi w},{ {\partial _{t}}w}\rangle _{\mathscr {L}_2} \\ =&\int _0^1 \left( T_b(x) w(x)dx + \int _0^x \bar{T}(x,y)w(y)dy + \int _x^1 \bar{T}(y,x)^T w(y) dy \right) ^T \\&\times \left( \phantom {\int } A_1(x)w_\alpha (x) + \int _0^x A_2(x,y)w_\alpha (y)dy + \int _x^1 A_3(x,y)w_\alpha (y)dy \right) dx. \end{aligned}$$

Therefore,

$$\begin{aligned} \mathscr {V}_d(w)=&-{\partial _{t}}\mathscr {V}(w)-2\delta \mathscr {V}(w) \\ =&-\int _0^1 \left( T_b(x) w(x)dx + \int _0^x \bar{T}(x,y)w(y)dy + \int _x^1 \bar{T}(y,x)^T w(y) dy \right) ^T \nonumber \\&\times \left( A_1(x)w_\alpha (x) + \int _0^x A_2(x,y)w_\alpha (y)dy + \int _x^1 A_3(x,y)w_\alpha (y)dy \right) dx \nonumber \\&-\delta \int _0^1 w(x)^T T_b(x) w(x)dx - \delta \int _\varDelta w(x)^T \varGamma \left[ \bar{T}(x,y) \right] w(y) d\varDelta =-\sum _{i=1}^4 \Phi _i,\nonumber \end{aligned}$$
(41)

where,

$$\begin{aligned} \Phi _1=&\int _0^1 \left( T_b(x) w(x) + \int _0^x \bar{T}(x,y)w(y)dy + \int _x^1 \bar{T}(y,x)^T w(y) dy \right) ^T A_1(x)w_\alpha (x)dx,\\ \Phi _2 =&\int _0^1 \left( T_b(x)w(x)\right) ^T \left( \int _0^x A_2(x,y)w_\alpha (y)dy + \int _x^1 A_3(x,y)w_\alpha (y)dy \right) dx, \\ \Phi _3 =&\int _0^1 \left( \int _0^x \bar{T}(x,y)w(y)dy + \int _x^1 \bar{T}(y,x)^T w(y)dy \right) ^T \\&\times \left( \int _0^x A_2(x,y)w_\alpha (y)dy + \int _x^1 A_3(x,y)w_\alpha (y)dy \right) dx,\\ \Phi _4=&\delta \int _0^1 w(x)^T T_b(x) w(x)dx + \delta \int _\varDelta w(x)^T \varGamma \left[ \bar{T}(x,y) \right] w(y) d\varDelta . \end{aligned}$$

The term \(\Phi _1\) may be written as

$$\begin{aligned} \Phi _1=&\int _0^1 \bar{w}_\alpha (x)^T \left[ \begin{array}{cc}T_b(x)A_1(x) &{} 0_{\beta ,2\beta \alpha } \\ 0_{3\beta \alpha ,\beta (\alpha +1)} &{} 0_{3\beta \alpha ,2\beta \alpha }\end{array}\right] \bar{w}_\alpha (x)dx \\&+ \int _0^1 \int _0^x w_\alpha (x)^T \left[ \begin{array}{c} \bar{T}(x,y)^T A_1(x) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] ^T w_\alpha (y)dy dx \\&+ \int _0^1 \int _x^1 w_\alpha (x)^T \left[ \begin{array}{c} \bar{T}(y,x)^T A_1(x) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] ^T w_\alpha (y)dy dx. \end{aligned}$$

Then, applying Lemma 6.1 to the double integrals and writing the single integral kernel in a symmetric form produces

$$\begin{aligned} \Phi _1 =&\int _0^1 \bar{w}_\alpha (x)^T He \left( \left[ \begin{array}{cc}T_b(x)A_1(x) &{} 0_{\beta ,2\beta \alpha } \\ 0_{3\beta \alpha ,\beta (\alpha +1)} &{} 0_{3\beta \alpha ,2\beta \alpha }\end{array}\right] \right) \bar{w}_\alpha (x)dx \nonumber \\&+ {{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ \left[ \begin{array}{c}\bar{T}(x,y)^T A_1(x) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] ^T + \left[ \begin{array}{c}\bar{T}(x,y) A_1(y) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] \right] w_\alpha (y) d\varDelta . \end{aligned}$$
(42)

The term \(\Phi _2\) may be written as

$$\begin{aligned} \Phi _2=&\int _0^1 \int _0^x w_\alpha (x)^T \left[ \begin{array}{c}T_b(x)A_2(x,y) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] w_\alpha (y)dydx \\&+\int _0^1 \int _x^1 w_\alpha (x)^T \left[ \begin{array}{c}T_b(x)A_3(x,y) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] w_\alpha (y)dydx. \end{aligned}$$

Applying Lemma 6.1 produces

$$\begin{aligned} \Phi _2 =&{{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ \left[ \begin{array}{c}T_b(x)A_2(x,y) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] + \left[ \begin{array}{c}T_b(y)A_3(y,x) \\ 0_{\beta \alpha ,\beta (\alpha +1)}\end{array}\right] ^T \right] w_\alpha (y)d\varDelta . \end{aligned}$$
(43)

The term \(\Phi _3\) may be written as

$$\begin{aligned} \Phi _3 =&\int _0^1 \left( \int _0^x \left[ \begin{array}{c}\bar{T}(x,y)^T \\ 0_{\beta \alpha ,\beta }\end{array}\right] ^T w_\alpha (y)dy + \int _x^1 \left[ \begin{array}{c}\bar{T}(y,x) \\ 0_{\beta \alpha ,\beta }\end{array}\right] ^T w_\alpha (y)dy \right) \nonumber \\&\times \left( \int _0^x A_2(x,y)w_\alpha (y)dy + \int _x^1 A_3(x,y)w_\alpha (y)dy \right) dx. \end{aligned}$$
(44)

Then, applying Lemma 6.2 to (44) with

$$\begin{aligned} F_1(x,y)=&\left[ \begin{array}{c}\bar{T}(x,y)^T \\ 0_{\beta \alpha ,\beta }\end{array}\right] ^T, \quad F_2(x,y)=\left[ \begin{array}{c}\bar{T}(y,x) \\ 0_{\beta \alpha ,\beta }\end{array}\right] ^T,\\ G_1(x,y)=&A_2(x,y), \quad G_2(x,y)=A_3(x,y), \quad v(y)=w_\alpha (y), \end{aligned}$$

produces

$$\begin{aligned} \Phi _3= {{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ \underline{U} \right] w_\alpha (y)d\varDelta , \end{aligned}$$
(45)

where \(\underline{U}(x,y)\) is defined in (5).

Finally, the term \(\Phi _4\) may be written as

$$\begin{aligned} \Phi _4=&\int _0^1 \bar{w}_\alpha (x)^T He \left( \left[ \begin{array}{cc}\delta T_b(x) &{} 0_{\beta ,3\beta \alpha } \\ 0_{3\beta \alpha ,\beta } &{} 0_{3\beta \alpha }\end{array}\right] \right) \bar{w}_\alpha (x)dx \nonumber \\&+{{\frac{1}{2}}} \int _\varDelta w_\alpha (x)^T \varGamma \left[ \left[ \begin{array}{cc}2\delta \bar{T}(x,y) &{} 0_{\beta ,\beta \alpha } \\ 0_{\beta \alpha ,\beta } &{} 0_{\beta \alpha }\end{array}\right] \right] w_\alpha (y)d\varDelta . \end{aligned}$$
(46)

Substituting (42), (43), (45) and (46) into (41) produces (5).

We now provide the proofs of previously stated results.

Proof

(Theorem 2) Throughout this proof, for notational brevity, we write q in place of \(q(\alpha ,\beta ,d)\). If we define

$$f(x)=\left[ \begin{array}{c} \bar{w}_\alpha (x) \\ \int _0^x Y_{q}(x,y)w_\alpha (y)dy \\ \int _x^1 Y_q(x,y)w_\alpha (y)dy \end{array}\right] , \quad w \in \mathscr {H}^\alpha \left( [0,1];\mathbb {R}^\beta \right) ,$$

then

$$\begin{aligned}&\int _0^1 f(x)^T R(x) f(x)dx \ge 0,\quad \forall w \in \mathscr {H}^\alpha \left( [0,1];\mathbb {R}^\beta \right) , \end{aligned}$$
(47)

since \(R(x) \succeq 0\), for all \(x \in [0,1]\). Simplifying the expression we obtain

$$\begin{aligned}&\int _0^1 f(x)^T R(x) f(x)dx = \int _0^1 \bar{w}_\alpha (x)^T R_b(x) \bar{w}_\alpha (x)dx + \sum _{i=1}^3 \varTheta _i, \end{aligned}$$
(48)

where

$$\begin{aligned} \varTheta _1=&2 \int _0^1 \int _0^x w_\alpha (x)^T R_{12}(x)Y_q(x,y)w_\alpha (y)dy dx \\&+ 2 \int _0^1 \int _x^1 w_\alpha (x)^T R_{13}(x)Y_q(x,y)w_\alpha (y)dy dx,\\ \varTheta _2=&\int _0^1 \left( \int _0^x Y_q(x,y) w_\alpha (y)dy \right) ^T \\&\times \left( \int _0^x R_{22}Y_q(x,y)w_\alpha (y)dy + \int _x^1 R_{23}Y_q(x,y)w_\alpha (y)dy \right) dx,\\ \varTheta _3=&\int _0^1 \left( \int _x^1 Y_q(x,y) w_\alpha (y)dy \right) ^T \\&\times \left( \int _0^x R_{23}^T Y_q(x,y)w_\alpha (y)dy + \int _x^1 R_{33}Y_q(x,y)w_\alpha (y)dy \right) dx. \end{aligned}$$

Applying Lemma 6.1 to \(\varTheta _1\) with \(K_1(x,y)=2R_{12}(x)Y_q(x,y)\) and

\(K_2(x,y)=2R_{13}(x)Y_q(x,y)\) produces

$$\begin{aligned} \varTheta _1 =&\int _\varDelta w_\alpha (x)^T \varGamma \left[ R_{12}(x)Y_q(x,y) \right] w_\alpha (y) d\varDelta \nonumber \\&+\int _\varDelta w_\alpha (x)^T \varGamma \left[ Y_q(y,x)^T R_{13}(y)^T \right] w_\alpha (y)d\varDelta , \end{aligned}$$
(49)

Applying Lemma 6.2 to \(\varTheta _2\) with

$$\begin{aligned} F_1(x,y)=&Y_q(x,y), \quad F_2(x,y) = 0_{q,\beta (\alpha +1)}, \quad v(y)=w_\alpha (y),\\ G_1(x,y)=&R_{22}Y_q(x,y), \quad G_2(x,y)=R_{23}Y_q(x,y), \end{aligned}$$

produces

$$\begin{aligned} \varTheta _2 =&\int _\varDelta w_\alpha (x)^T \varGamma \left[ \int _y^x Y_q(z,x)^T \frac{R_{23}^T}{2}Y_q(z,y)dz\right] w_\alpha (y) d\varDelta , \nonumber \\&+ \int _\varDelta w_\alpha (x)^T \varGamma \left[ \int _x^1 Y_q(z,x)^T R_{22}Y_q(z,y)dz\right] w_\alpha (y) d\varDelta . \end{aligned}$$
(50)

Similarly, applying Lemma 6.2 to \(\varTheta _3\) with

$$\begin{aligned} F_1(x,y)=&0_{q,\beta (\alpha +1)}, \quad F_2(x,y) = Y_q(x,y), \quad v(y)=w_\alpha (y),\\ G_1(x,y)=&R_{23}^T Y_q(x,y), \quad G_2(x,y)=R_{33}Y_q(x,y), \end{aligned}$$

produces

$$\begin{aligned} \varTheta _3 =&\int _\varDelta w_\alpha (x)^T \varGamma \left[ \int _0^y Y_q(z,x)^T R_{33}^TY_q(z,y)dz\right] w_\alpha (y) d\varDelta , \nonumber \\&+ \int _\varDelta w_\alpha (x)^T \varGamma \left[ \int _y^x Y_q(z,x)^T \frac{R_{23}^T}{2}Y_q(z,y)dz\right] w_\alpha (y) d\varDelta . \end{aligned}$$
(51)

Substituting (49)–(51) into (48) produces

$$\begin{aligned} \int _0^1 f(x)^T R(x)f(x)dx =&\int _0^1 \bar{w}_\alpha (x)^T R_b(x) \bar{w}_\alpha (x)dx + \int _\varDelta w_\alpha (x)^T \varGamma \left[ \bar{R}\right] w_\alpha (y)d\varDelta \end{aligned}$$

Then, (47) completes the proof.    \(\blacksquare \)

Proof

(Corollary 1) Following the same steps as for the proof of Theorem 2, it can be shown that

$$\begin{aligned}&\mathscr {T}(w)-\epsilon \Vert {w}\Vert _{\mathscr {L}_2} = \int _0^1 f(x)^T \left( T(x) -\left[ \begin{array}{cc}\epsilon I_\beta &{} 0_{\beta ,2q(0,\beta ,d)} \\ 0_{2q(0,\beta ,d),\beta } &{} 0_{2q(0,\beta ,d)}\end{array}\right] \right) f(x)dx, \end{aligned}$$

where

$$\begin{aligned} f(x) = \left[ \begin{array}{c}w(x) \\ \int _0^x Y_{q(0,\beta ,d)}(x,y) w(y)dy \\ \int _x^1 Y_{q(0,\beta ,d)}(x,y) w(y)dy\end{array}\right] , \quad w \in \mathscr {L}_2\left( [0,1];\mathbb {R}^\beta \right) . \end{aligned}$$

Then, (18) holds since (17) holds.    \(\blacksquare \)

Proof

(Lemma 2) Consider the vector field

$$ \left[ \begin{array}{c}\phi _1(x,y) \\ \phi _2(x,y)\end{array}\right] = \left[ \begin{array}{c} w_{\alpha -1}(x)^T H_1(x,y) w_{\alpha -1}(y) \\ w_{\alpha -1}(x)^T H_2(x,y) w_{\alpha -1}(y)\end{array}\right] , $$

Then, by Green’s theorem

$$\begin{aligned}&\oint _{\partial \overline{\varOmega }} \left( \phi _1(x,y)dx + \phi _2(x,y)dy \right) + \int _{\overline{\varOmega }} \left( \partial _y\phi _1(x,y) - \partial _x\phi _2(x,y) \right) d \overline{\varOmega } = 0, \end{aligned}$$

where \(\partial \overline{\varOmega }\) denotes the boundary of the domain \(\overline{\varOmega }\). Therefore, we obtain

$$\begin{aligned}&\int _0^1 \left[ \phi _1(x,0)+\phi _2(1,x)-\phi _1(x,x)-\phi _2(x,x) \right] dx + \int _0^1 \int _0^x \left[ \partial _y\phi _1-\partial _x\phi _2 \right] dy dx=0. \end{aligned}$$
(52)

Using the definitions of the projection matrices described in subsection on notation used in the chapter, we obtain

$$\begin{aligned} \int _0^1 \left[ \phi _1(x,0)+\phi _2(1,x)-\phi _1(x,x)-\phi _2(x,x) \right] dx&=\int _0^1 \bar{w}_\alpha (x)^T H_b(x) \bar{w}_\alpha (x)dx \nonumber \\&=\int _0^1 \bar{w}_\alpha (x)^T He \left( H_b(x) \right) \bar{w}_\alpha (x)dx. \end{aligned}$$
(53)

Similarly, we also obtain the following identity

$$\begin{aligned}&\int _0^1 \int _0^x \left[ \partial _y\phi _1(x,y)-\partial _x\phi _2(x,y) \right] dy dx = \int _0^1 \int _0^x w_\alpha (x)^T 2 \bar{H}(x,y) w_\alpha (y)dy dx. \end{aligned}$$

Then, applying Lemma 6.1 with \(K_1 = 2\bar{H}\) and \(K_2 = 0\) produces

$$\begin{aligned}&\int _0^1 \int _0^x w_\alpha (x)^T 2 \bar{H}(x,y) w_\alpha (y)dy dx = \int _\varDelta w_\alpha (x)^T \varGamma \left[ \bar{H}(x,y) \right] w_\alpha (y)dy dx. \end{aligned}$$
(54)

Substituting (53) and (54) into (52) completes the proof.    \(\blacksquare \)

Proof

(Lemma 3) Since for all \(w \in \mathscr {B}\) (see (2c)),

$$\begin{aligned} \int _0^1 \left[ \begin{array}{cc}F_1(x)&F_2 \end{array}\right] \bar{w}_\alpha (x)dx=0_{\beta \alpha ,1}, \end{aligned}$$

we get for all \(w \in \mathscr {B}\)

$$\begin{aligned} 0=&\int _0^1 \bar{w}_\alpha (y)^T \left[ \begin{array}{c}B_1(y) \\ B_2\end{array}\right] dy \cdot \int _0^1 \left[ \begin{array}{cc}F_1(x)&F_2 \end{array}\right] \bar{w}_\alpha (x)dx \\ =&\int _0^1 \int _0^1 \bar{w}_\alpha (y)^T \left[ \begin{array}{c} B_1(y) \\ B_2\end{array}\right] \left[ \begin{array}{cc}F_1(x)&F_2 \end{array}\right] \bar{w}_\alpha (x) dy dx \\ =&\int _0^1 \int _0^1 \bar{w}_\alpha (y)^T \left[ \begin{array}{cc} B_1(y)F_1(x) &{} B_1(y)F_2 \\ B_2 F_1(x) &{} B_2 F_2 \end{array}\right] \bar{w}_\alpha (x) dy dx. \end{aligned}$$

Switching between the variables x and y and changing the order of integration produces

$$\begin{aligned} 0=&\int _0^1 \int _0^1 \bar{w}_\alpha (x)^T \left[ \begin{array}{cc}B_1(x)F_1(y) &{} B_1(x)F_2 \\ B_2 F_1(y) &{} B_2 F_2\end{array}\right] \bar{w}_\alpha (y) dy dx, \end{aligned}$$

for all \(w \in \mathscr {B}\). Recall that

$$\begin{aligned} \bar{w}_\alpha (x) = \left[ \begin{array}{c}w_\alpha (x) \\ w_\alpha ^b\end{array}\right] . \end{aligned}$$

Therefore, we simplify the previous expression to obtain for all \(w \in \mathscr {B}\)

$$\begin{aligned} 0 =&\int _0^1 \int _0^1 \left[ \begin{array}{c}w_\alpha (x) \\ w_\alpha ^b\end{array}\right] ^T \left[ \begin{array}{cc}B_1(x)F_1(y) &{} B_1(x)F_2 \\ B_2 F_1(y) &{} B_2 F_2\end{array}\right] \left[ \begin{array}{c}w_\alpha (y) \\ w_\alpha ^b\end{array}\right] dy dx \\ =&\int _0^1 \bar{w}_\alpha (x)^T B_b(x) \bar{w}_\alpha (x) dx + \int _0^1 \int _0^1 w_\alpha (x)^T B_1(x)F_1(y) w_\alpha (y) dy dx. \end{aligned}$$

Writing the single integral kernel in symmetric form and dividing up the double integral gives us

$$\begin{aligned} 0 =&\int _0^1 \bar{w}_\alpha (x)^T He \left( B_b(x) \right) \bar{w}_\alpha (x) dx \\&+ \int _0^1 \int _0^x w_\alpha (x)^T B_1(x)F_1(y) w_\alpha (y) dy dx + \int _0^1 \int _x^1 w_\alpha (x)^T B_1(x)F_1(y) w_\alpha (y) dy dx, \end{aligned}$$

for all \(w \in \mathscr {B}\). Then, applying Lemma 6.1 with \(K_1(x,y)=K_2(x,y)= B_1(x) F_1(y)\) completes the proof.    \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gahlawat, A., Valmorbida, G. (2022). Analysis of Linear Partial Differential Equations Using Convex Optimization. In: Valmorbida, G., Michiels, W., Pepe, P. (eds) Accounting for Constraints in Delay Systems. Advances in Delays and Dynamics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-89014-8_12

Download citation

Publish with us

Policies and ethics