Skip to main content

A Low-Cost IMU-Based Wearable System for Precise Identification of Walk Activity Using Deep Convolutional Neural Network

  • Chapter
  • First Online:
Big Data Intelligence for Smart Applications

Abstract

The increasing popularity of smart wearable devices can be attributed to progress in research towards human activity recognition. With the use of tiny sensing units, the different human activities of day-to-day life can be identified with a high accuracy. However, as a fitness tracking product, smart wearables are not always accurate in determining actual physical motion details. For example, recognizing walk activity may not always be possible when the monitoring device is held in hand, or kept in pockets. For precise recognition of walk activity, movement of legs needs to be monitored. However, the movement of legs while walking must be distinguished from simple leg swing activities. The present work designs an IMU based sensing system that can prevent false identification of a mimicked walk or leg swing in sitting posture as a real walk activity, using conventional and convolutional deep learning algorithms. The system shows remarkable capability of identifying an actual walk from a mimicked walk activity using CNN 95% of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://robu.in/product/mpu6050gyrosensor2accelerometer.

References

  • N. Ahmed, J.I. Rafiq, M.R. Islam, Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors 20(1), 317 (2020). https://doi.org/10.3390/s20010317

    Article  Google Scholar 

  • N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression. Amer. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  • K. Altun, B. Barshan, Human activity recognition using inertial/magnetic sensor units, in International Workshop on Human Behavior Understanding (Springer, 2010), pp. 38–51. https://doi.org/10.1007/978-3-642-14715-9_5

  • D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine, in International Workshop on Ambient Assisted Living (Springer, 2012), pp. 216–223. https://doi.org/10.1007/978-3-642-35395-6_30

  • F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, Y. Amirat, Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015). https://doi.org/10.3390/s151229858

    Article  Google Scholar 

  • A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P. Havinga, Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey, in 23th International Conference on Architecture of Computing Systems 2010 (VDE, 2010), pp. 1–10

    Google Scholar 

  • O. Banos, R. Garcia, J.A. Holgado-Terriza, M. Damas, H. Pomares, I. Rojas, A. Saez, C. Villalonga, Mhealthdroid: a novel framework for agile development of mobile health applications, in International Workshop on Ambient Assisted Living (Springer, 2014), pp. 91–98. https://doi.org/10.1007/978-3-319-13105-4_14

  • B. Barshan, M.C. Yüksek, Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units. Comput. J. 57(11), 1649–1667 (2014). https://doi.org/10.1093/comjnl/bxt075

    Article  Google Scholar 

  • S. Bounyong, S. Adachi, J. Ozawa, Y. Yamada, M. Kimura, Y. Watanabe, K. Yokoyama, Fall risk estimation based on co-contraction of lower limb during walking, in 2016 IEEE International Conference on Consumer Electronics (ICCE) (IEEE, 2016), pp. 331–332. https://doi.org/10.1109/ICCE.2016.7430634

  • R. Bracewell, The autocorrelation function. The Fourier transform and its applications (1965), pp. 40–45

    Google Scholar 

  • R.N. Bracewell, R.N. Bracewell, The Fourier Transform and Its Applications, vol. 31999 (McGraw-Hill, New York, 1986)

    MATH  Google Scholar 

  • L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series (Taylor & Francis, 1984), https://books.google.co.in/books?id=JwQx-WOmSyQC

  • I. Chandra, N. Sivakumar, C.B. Gokulnath, P. Parthasarathy, Iot based fall detection and ambient assisted system for the elderly. Clust. Comput. 22(1), 2517–2525 (2019). https://doi.org/10.1007/s10586-018-2329-2

    Article  Google Scholar 

  • M.D. Chen, C.C. Kuo, C.A. Pellegrini, M.J. Hsu, Accuracy of wristband activity monitors during ambulation and activities. Med. & Sci. Sports & Exer. 48(10), 1942–1949 (2016). https://doi.org/10.1249/mss.0000000000000984

    Article  Google Scholar 

  • R. Cheng, W. Heinzelman, M. Sturge-Apple, Z. Ignjatovic, A motion-tracking ultrasonic sensor array for behavioral monitoring. IEEE Sens. J. 12(3), 707–712 (2011). https://doi.org/10.1109/JSEN.2011.2165942

    Article  Google Scholar 

  • G. Chetty, M. White, F. Akther, Smart phone based data mining for human activity recognition. Procedia Comput. Sci. 46, 1181–1187 (2015). https://doi.org/10.1016/j.procs.2015.01.031

    Article  Google Scholar 

  • Y. Cho, Y. Nam, Y.J. Choi, W.D. Cho, Smartbuckle: human activity recognition using a 3-axis accelerometer and a wearable camera, in Proceedings of the 2nd International Workshop on Systems and Networking Support for Health Care and Assisted Living Environments (ACM, 2008), pp. 1–3. https://doi.org/10.1145/1515747.1515757

  • I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J. Hallberg, K. Synnes, S. McClean, D. Finlay, Optimal placement of accelerometers for the detection of everyday activities. Sensors 13(7), 9183–9200 (2013). https://doi.org/10.3390/s130709183

    Article  Google Scholar 

  • J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  Google Scholar 

  • C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  • S. Dernbach, B. Das, N.C. Krishnan, B.L. Thomas, D.J. Cook, Simple and complex activity recognition through smart phones, in 2012 Eighth International Conference on Intelligent Environments (IEEE, 2012), pp. 214–221. https://doi.org/10.1109/IE.2012.39

  • L. Fan, Z. Wang, H. Wang, Human activity recognition model based on decision tree, in 2013 International Conference on Advanced Cloud and Big Data (IEEE, 2013), pp. 64–68. https://doi.org/10.1109/CBD.2013.19

  • K. Fukushima, Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980). https://doi.org/10.1007/978-3-642-46466-9_18

    Article  MATH  Google Scholar 

  • X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (PMLR, 2011), pp. 315–323

    Google Scholar 

  • D.J. Hand, K. Yu, Idiot’s bayes-not so stupid after all? Int. Stat. Rev. 69(3), 385–398 (2001)

    MATH  Google Scholar 

  • M. Hardegger, D. Roggen, G. Tröster, 3d actionslam: wearable person tracking in multi-floor environments. Pers. Ubiquit. Comput. 19(1), 123–141 (2015). https://doi.org/10.1007/s00779-014-0815-y

    Article  Google Scholar 

  • N. Hegde, E.S. Sazonov, Smartstep 2.0-a completely wireless, versatile insole monitoring system, in 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE, 2015), pp. 746–749. https://doi.org/10.1109/BIBM.2015.7359779

  • G.E. Hinton, A. Krizhevsky, I. Sutskever, N. Srivastva, System and method for addressing overfitting in a neural network. US Patent 9,406,017 (2016)

    Google Scholar 

  • Y. Jang, S. Shin, J.W. Lee, S. Kim, A preliminary study for portable walking distance measurement system using ultrasonic sensors, in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2007), pp. 5290–5293. https://doi.org/10.1109/IEMBS.2007.4353535

  • L.C. Jatoba, U. Grossmann, C. Kunze, J. Ottenbacher, W. Stork, Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity, in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2008), pp. 5250–5253. https://doi.org/10.1109/IEMBS.2008.4650398

  • H. Jian, H. Chen, A portable fall detection and alerting system based on k-nn algorithm and remote medicine. China Commun. 12(4), 23–31 (2015). https://doi.org/10.1109/CC.2015.7114066

    Article  MathSciNet  Google Scholar 

  • M. Kose, O.D. Incel, C. Ersoy, Online human activity recognition on smart phones, in Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data, vol. 16 (2012), pp. 11–15

    Google Scholar 

  • E. Kreyszig, Advanced Engineering Mathematics, 10th edn. (Wiley, New York, 2009)

    MATH  Google Scholar 

  • V.S. Kumar, K.G. Acharya, B. Sandeep, T. Jayavignesh, A. Chaturvedi, Wearable sensor-based human fall detection wireless system, in Wireless Communication Networks and Internet of Things (Springer, 2019), pp. 217–234. https://doi.org/10.1007/978-981-10-8663-2_23

  • P. Kumari, L. Mathew, P. Syal, Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90, 298–307 (2017). https://doi.org/10.1016/j.bios.2016.12.001

    Article  Google Scholar 

  • J.R. Kwapisz, G.M. Weiss, S.A. Moore, Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011). https://doi.org/10.1145/1964897.1964918

    Article  Google Scholar 

  • N.D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choudhury, A. Campbell, Bewell: a smartphone application to monitor, model and promote wellbeing, in 5th International ICST Conference on Pervasive Computing Technologies for Healthcare (2011), pp. 23–26

    Google Scholar 

  • N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A.T. Campbell, A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010). https://doi.org/10.1109/MCOM.2010.5560598

    Article  Google Scholar 

  • G. Li, T. Liu, J. Yi, Wearable sensor system for detecting gait parameters of abnormal gaits: a feasibility study. IEEE Sens. J. 18(10), 4234–4241 (2018). https://doi.org/10.1109/JSEN.2018.2814994

    Article  Google Scholar 

  • X. Liang, G. Wang, A convolutional neural network for transportation mode detection based on smartphone platform, in 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), (IEEE, 2017), pp. 338–342. https://doi.org/10.1109/MASS.2017.81

  • H.F. Nweke, Y.W. Teh, M.A. Al-Garadi, U.R. Alo, Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056

    Article  Google Scholar 

  • K. Ozcan, S. Velipasalar, Wearable camera-and accelerometer-based fall detection on portable devices. IEEE Embed. Syst. Lett. 8(1), 6–9 (2015). https://doi.org/10.1109/LES.2015.2487241

    Article  Google Scholar 

  • M. Panwar, S.R. Dyuthi, K.C. Prakash, D. Biswas, A. Acharyya, K. Maharatna, A. Gautam, G.R. Naik, Cnn based approach for activity recognition using a wrist-worn accelerometer, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2017), pp. 2438–2441. https://doi.org/10.1109/EMBC.2017.8037349

  • I.M. Pires, G. Marques, N.M. Garcia, F. Flórez-Revuelta, M. Canavarro Teixeira, E. Zdravevski, S. Spinsante, M. Coimbra, Pattern recognition techniques for the identification of activities of daily living using a mobile device accelerometer. Electronics 9(3), 509 (2020). https://doi.org/10.3390/electronics9030509

  • S. Pirttikangas, K. Fujinami, T. Nakajima, Feature selection and activity recognition from wearable sensors, in International Symposium on Ubiquitious Computing Systems (Springer, 2006), pp. 516–527. https://doi.org/10.1007/11890348_39

  • A. Sano, A.J. Phillips, Z.Y. Amy, A.W. McHill, S. Taylor, N. Jaques, C.A. Czeisler, E.B. Klerman, R.W. Picard, Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (IEEE, 2015), pp. 1–6. https://doi.org/10.1109/BSN.2015.7299420

  • M. Shoaib, S. Bosch, H. Scholten, P.J. Havinga, O.D. Incel, Towards detection of bad habits by fusing smartphone and smartwatch sensors, in 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (IEEE, 2015), pp. 591–596. https://doi.org/10.1109/PERCOMW.2015.7134104

  • H. Similä, M. Immonen, M. Ermes, Accelerometry-based assessment and detection of early signs of balance deficits. Comput. Biol. Med. 85, 25–32 (2017). https://doi.org/10.1016/j.compbiomed.2017.04.009

    Article  Google Scholar 

  • Statista, Forecast wearables unit shipments worldwide from 2014 to 2023, https://www.statista.com/statistics/437871/wearables-worldwide-shipments/. Accessed 25 Jan 2020

  • D.N. Tran, D.D. Phan, Human activities recognition in android smartphone using support vector machine, in 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS) (IEEE, 2016), pp. 64–68. https://doi.org/10.1109/ISMS.2016.51

  • P. van de Ven, H. O’Brien, J. Nelson, A. Clifford, Unobtrusive monitoring and identification of fall accidents. Med. Eng. & Phys. 37(5), 499–504 (2015). https://doi.org/10.1016/j.medengphy.2015.02.009

    Article  Google Scholar 

  • D. Yacchirema, J.S. de Puga, C. Palau, M. Esteve, Fall detection system for elderly people using iot and big data. Procedia Comput. Sci. 130, 603–610 (2018). https://doi.org/10.1016/j.procs.2018.04.110

    Article  Google Scholar 

  • J. Yang, M.N. Nguyen, P.P. San, X.L. Li, S. Krishnaswamy, Deep convolutional neural networks on multichannel time series for human activity recognition, in Twenty-Fourth International Joint Conference on Artificial Intelligence (AAAI Press, 2015)

    Google Scholar 

  • M. Zeng, L.T. Nguyen, B. Yu, O.J. Mengshoel, J. Zhu, P. Wu, J. Zhang, Convolutional neural networks for human activity recognition using mobile sensors, in 6th International Conference on Mobile Computing, Applications and Services (IEEE, 2014), pp. 197–205. https://doi.org/10.4108/icst.mobicase.2014.257786

  • Z. Zhang, S. Poslad, Improved use of foot force sensors and mobile phone gps for mobility activity recognition. IEEE Sens. J. 14(12), 4340–4347 (2014). https://doi.org/10.1109/JSEN.2014.2331463

    Article  Google Scholar 

  • P. Zhang, X. Chen, X. Ma, Y. Wu, H. Jiang, D. Fang, Z. Tang, Y. Ma, Smartmtra: robust indoor trajectory tracing using smartphones. IEEE Sens. J. 17(12), 3613–3624 (2017). https://doi.org/10.1109/JSEN.2017.2692263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, A., Mukherjee, N. (2022). A Low-Cost IMU-Based Wearable System for Precise Identification of Walk Activity Using Deep Convolutional Neural Network. In: Baddi, Y., Gahi, Y., Maleh, Y., Alazab, M., Tawalbeh, L. (eds) Big Data Intelligence for Smart Applications. Studies in Computational Intelligence, vol 994. Springer, Cham. https://doi.org/10.1007/978-3-030-87954-9_5

Download citation

Publish with us

Policies and ethics