Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 256))

Included in the following conference series:

Abstract

Histopathological image analysis of biopsy sample provides an accurate diagnosis method for cancer. Usually Pathologists examine the microscopic images of biopsy sample manually for the detection and grading of cancer. Automation in this field helps the pathologists to take a second opinion before confirming with their findings. We propose an effective method of automated cancer detection by combining the effect of transfer learning and ensemble learning. Six pre-trained models such as Densenet121, Resnet 50, Xception, EfficientNet B7, MobileNetV2, and VGG19 are used for preparing an ensemble model. A dataset contains 5547 H&E stained histopathological images of malignant and benign tissues are used to train and validate each models individually and obtained an accuracy of 77.9%, 79%, 79.8%, 78.3%, 77%, and 76% respectively. Based on the accuracy, best performing three models Resnet50, Xception, and EfficientnetB7 are selected to form an ensemble model. Then the layers and weights of these models are freezed and the output layers are concatenated to make an ensemble model. New dense layers are added to the ensembled model to provide a single output for binary classification. The model is compiled by an Adam optimizer with a learning rate of 0.001. The images are again applied to this ensemble model to classify the malignant and benign tissues and obtained an accuracy of 96% and precision of 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, P., Levin, B.: World Cancer report 2008: IARC Press. International Agency for Research on Cancer (2008)

    Google Scholar 

  2. https://www.who.int/nmh/publications/ncd_report_chapter1.pdf

  3. Xie, J., Liu, R., Luttrell, J., Zhang, C.: Deep learning based analysis of histopathological images of breast cancer. Front. Genet. 10(80), 1–19 (2019)

    Google Scholar 

  4. Bello, M., Nápoles, G., Sánchez, R., Bello, R., Vanhoof, R.: Deep neural network to extract high-level features and labels in multi-label classification problems, Neurocomputing, 413, 259–270 (2020). ISSN 0925–2312

    Google Scholar 

  5. Hussain, M., Bird, J.J., Faria, D.R.: A study on CNN transfer learning for image classification. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds.) UKCI 2018. AISC, vol. 840, pp. 191–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97982-3_16

    Chapter  Google Scholar 

  6. Nanni, L., Ghidoni, S., Brahnam, S.: Ensemble of convolutional neural networks for bioimage classification, Appl. Comput. Inf. (2020). ISSN 22108327

    Google Scholar 

  7. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). https://arxiv.org/abs/1704.04861

    Google Scholar 

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. Honolulu, HI, USA (2017)

    Google Scholar 

  9. https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33

  10. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. https://arxiv.org/abs/1608.06993

  11. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  12. Huang, F., Xie, G., Xiao, R.: Research on ensemble learning. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence. vol. 3. IEEE Computer Society (2009)

    Google Scholar 

  13. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  14. Zhu, Y., Brettin, T., Evrard, Y.A., et al.: Ensemble transfer learning for the prediction of anti-cancer drug response. Sci. Rep. 10, 18040 (2020). https://doi.org/10.1038/s41598-020-74921-0

    Article  Google Scholar 

  15. Xue, D., et al.: An application of transfer learning and ensemble learning techniques for cervical histopathology image classification. IEEE Access 8 (2020)

    Google Scholar 

  16. Kandaswamy, C., Silva, L.M., Alexandre, L.A., Santos, J.M.: Deep transfer learning ensemble for classification. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 335–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19258-1_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devassy, B.R., Antony, J.K. (2022). Histopathological Image Classification Using Ensemble Transfer Learning. In: Misra, R., Shyamasundar, R.K., Chaturvedi, A., Omer, R. (eds) Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021). ICMLBDA 2021. Lecture Notes in Networks and Systems, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-030-82469-3_18

Download citation

Publish with us

Policies and ethics