Skip to main content

Towards a Computational Framework for Automated Discovery and Modeling of Biological Rhythms from Wearable Data Streams

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 296))

Included in the following conference series:

Abstract

Modeling biological rhythms helps understand the complex principles behind the physical and psychological abnormalities of human bodies, to plan life schedules, and avoid persisting fatigue and mood and sleep alterations due to the desynchronization of those rhythms. The first step in modeling biological rhythms is to identify their characteristics, such as cyclic periods, phase, and amplitude. However, human rhythms are susceptible to external events, which cause irregular fluctuations in waveforms and affect the characterization of each rhythm. In this paper, we present our exploratory work towards developing a computational framework for automated discovery and modeling of human rhythms. We first identify cyclic periods in time series data using three different methods and test their performance on both synthetic data and real fine-grained biological data. We observe consistent periods are detected by all three methods. We then model inner cycles within each period through identifying change points to observe fluctuations in biological data that may inform the impact of external events on human rhythms. The results provide initial insights into the design of a computational framework for discovering and modeling human rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Empatica. E4 wristband User’s manual (2018a). Accessed 11 April 2018. https://empatica.app.box.com/v/E4-User-Manual

  2. Abdullah, S., Matthews, M., Frank, E., Doherty, G., Gay, G., Choudhury, T.: Automatic detection of social rhythms in bipolar disorder. J. Am. Med. Inform. Assoc. 23(3), 538–543 (2016)

    Article  Google Scholar 

  3. Abe, K., Kroning, J., Greer, M.A., Critchlow, V.: Effects of destruction of the suprachiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29(2), 119–131 (1979)

    Article  Google Scholar 

  4. Adamopoulos, S., et al.: Circadian pattern of heart rate variability in chronic heart failure patients effects of physical training. Eur. Heart J. 16(10), 1380–1386 (1995)

    Article  Google Scholar 

  5. Aguzzi, J., Sarria, D., Garcia, J.A., del Rio, J., Sarda, F., Lzaro, A.: A new tracking system for the measurement of diel locomotor rhythms in the Norway lobster, nephrops norvegicus (l.). J. Neurosci. Methods 173, 215–224 (2008)

    Google Scholar 

  6. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z

    Article  Google Scholar 

  7. Aschoff, J., Gerecke, U., Wever, R.: Desynchronization of human circadian rhythms. Jpn. J. Physiol. 17, 450–457 (1967)

    Google Scholar 

  8. Bosc, M., Heitz, F., Armspach, J.-P., Namer, I., Gounot, D., Rumbach, L.: Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution. NeuroImage 20(2), 643–656 (2003)

    Article  Google Scholar 

  9. Cornélissen, G.: Cosinor-based rhythmometry. Theor. Biol. Med. Model. 11, 16 (2014)

    Google Scholar 

  10. Doryab, A., Dey, A.K., Kao, G., Low, C.: Modeling biobehavioral rhythms with passive sensing in the wild: a case study to predict readmission risk after pancreatic surgery. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(1), 1–21 (2019)

    Google Scholar 

  11. Enright, J.: The search for rhythmicity in biological time-series. J. Theor. Biol. 8, 426–468 (1965)

    Google Scholar 

  12. Frick, L.: Heart rate and skin temperature dateset, October 2016. https://data.world/laurie/skin-temperature/

  13. Gale, J.E., Cox, H.I., Qian, J., Block, G.D., Colwell, C.S., Matveyenko, A.V.: Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythms 26(5), 423–433 (2011)

    Google Scholar 

  14. Gani, J., Bloomfield, P.: Fourier analysis of time series: an introduction. Int. Stat. Rev./Revue Internationale de Statistique. 46, 116 (1978)

    Google Scholar 

  15. Germain, A., Kupfer, D.: Circadian rhythm disturbances in depression. Human Psychopharmacol. 23, 571–585 (2008)

    Google Scholar 

  16. Gery, S., Koeffler, H.P.: Circadian rhythms and cancer. Cell Cycle 9(6), 1097–1103 (2010)

    Google Scholar 

  17. Glynn, E.F., Chen, J., Mushegian, A.R.: Detecting periodic patterns in unevenly spaced gene expression time series using lomb-scargle periodograms. Bioinformatics 22(3), 310–316 (2006)

    Google Scholar 

  18. Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 09 (1995)

    Article  MathSciNet  Google Scholar 

  19. Gubin, D.G., et al.: Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiol. Int. 34(5), 632–649 (2017)

    Article  Google Scholar 

  20. Hadj-Amar, B., Rand, B.F., Fiecas, M., Levi, F., Huckstepp, R.: Bayesian model search for nonstationary periodic time series. J. Am. Stat. Assoc. 115, 1–36 (2019)

    Google Scholar 

  21. Halberg, F.: Some physiological and clinical aspects of 24-hour periodicity. J.-lancet 73, 20–32 (1953)

    Google Scholar 

  22. Halberg, F., Tong, Y.L., Johnson, E.A.: Circadian system phase-an aspect of temporal morphology; procedures and illustrative examples. In: The Cellular Aspects of Biorhythms, pp. 20–48. Springer (1967)

    Google Scholar 

  23. Kräuchi, K.: How is the circadian rhythm of core body temperature regulated? (2002)

    Google Scholar 

  24. Laguna, J.O., Olaya, A.G., Borrajo, D.: A dynamic sliding window approach for activity recognition. In: International Conference on User Modeling, Adaptation, and Personalization, pp. 219–230. Springer (2011)

    Google Scholar 

  25. Leise, T.: Analysis of nonstationary time series for biological rhythms research. J. Biol. Rhythms 32, 074873041770910 (2017)

    Google Scholar 

  26. Malladi, R., Kalamangalam, G.P., Aazhang, B.: Online Bayesian change point detection algorithms for segmentation of epileptic activity. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp. 1833–1837. IEEE (2013)

    Google Scholar 

  27. Massin, M.M., Maeyns, K., Withofs, N., Ravet, F., Gérard, P.: Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 83(2), 179–182 (2000)

    Google Scholar 

  28. Moritz, S., Bartz-Beielstein, T.: impute TS: time series missing value imputation in R. R J. 9(1), 207 (2017)

    Article  Google Scholar 

  29. Morris, C., Purvis, T., Kun, H., Scheer, F.: Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Nat. Acad. Sci. 113, 02 (2016)

    Article  Google Scholar 

  30. Murnane, E.L., Abdullah, S., Matthews, M., Choudhury, T., Gay, G.: Social (media) jet lag: how usage of social technology can modulate and reflect circadian rhythms. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 843–854 (2015)

    Google Scholar 

  31. Peters, B.R.: Why does my heart rate spike when i’m asleep? (2018)

    Google Scholar 

  32. Peters, B.R., Joireman, J., Ridgway, R.L., Individual differences in the consideration of future consequences scale correlate with sleep habits, sleep quality, and GPA in university students. Psychol. Rep. 96(3), 817–824 (2005)

    Google Scholar 

  33. Pierson, E., Althoff, T., Leskovec, J.: Modeling individual cyclic variation in human behavior. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018, pp. 107–116, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  34. Rabiner, L., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Google Scholar 

  35. Refinetti, R., Lissen, G., Halberg, F.: Procedures for numerical analysis of circadian rhythms. Biol. Rhythm Res. 38, 275–325 (2007)

    Google Scholar 

  36. Refinetti, R., Menaker, M.: The circadian rhythm of body temperature. Physiol. Behav. 51, 613–637 (1992)

    Google Scholar 

  37. Reinberg, A., Ashkenazi, I.: Concepts in human biological rhythms. Dialogues Clin. Neurosci. 5, 327–342 (2003)

    Google Scholar 

  38. Saner, C., Simonetti, G.D., Wühl, E., Mullis, P.E., Janner, M.: Circadian and ultradian cardiovascular rhythmicity in obese children. Eur. J. Pediatr. 175(8), 1031–1038 (2016). https://doi.org/10.1007/s00431-016-2736-4

    Article  Google Scholar 

  39. Sokolove, P., Bushell, W.: The chi square periodogram: its utility for analysis of circadian rhythms. J. Theor. Biol. 72, 131–160 (1978)

    Google Scholar 

  40. Staudacher, M., Telser, S., Amann, A., Hinterhuber, H., Ritsch-Marte, M.: A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep. Physica A Stat. Mech. Appl. 349(3–4), 582–596 (2005)

    Article  Google Scholar 

  41. van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Human activity recognition from wireless sensor network data: Benchmark and software. In: Activity Recognition in Pervasive Intelligent Environments, pp. 165–186. Springer (2011)

    Google Scholar 

  42. Vukolic, A., Antic, V., Van Vliet, B.N., Yang, Z., Albrecht, U., Montani, J.P.: Role of mutation of the circadian clock gene per2 in cardiovascular circadian rhythms. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 298(3), R627–R634 (2010)

    Google Scholar 

  43. Yang, P., Dumont, G., Ansermino, J.M.: Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Trans. Biomed. Eng. 53(11), 2211–2219 (2006)

    Google Scholar 

  44. Yoshizawa, M., Takasaki, W., Ohmura, R.: Parameter exploration for response time reduction in accelerometer-based activity recognition. In: Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pp. 653–664 (2013)

    Google Scholar 

  45. Zielinski, T., Moore, A., Troup, E., Halliday, K., Millar, A.: Strengths and limitations of period estimation methods for circadian data. PloS one 9, e96462 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runze Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, R., Doryab, A. (2022). Towards a Computational Framework for Automated Discovery and Modeling of Biological Rhythms from Wearable Data Streams. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-82199-9_44

Download citation

Publish with us

Policies and ethics