Skip to main content

A Hybrid Deep Learning Ensemble for Cyber Intrusion Detection

  • Conference paper
  • First Online:
Proceedings of the 22nd Engineering Applications of Neural Networks Conference (EANN 2021)

Abstract

The daily growth of computer networks usage increases the need to protect users from malware and other threats. This paper, presents a hybrid Intrusion Detecting System (IDS) comprising of a 2-Dimensional Convolutional Neural Network (2-D CNN), a Recurrent Neural Network (RNN) and a Multi-Layer Perceptron (MLP) for the detection of 9 Cyber Attacks versus normal flow. The timely Kitsune Network attack dataset was used in this research. The proposed model achieved an overall accuracy of 92.66%, 90.64% and 90.56% in the train, validation and testing phases respectively. The typical five classification indices Sensitivity, Specificity, Accuracy, F1-Score and Precision were calculated following the “One-Versus-All Strategy”. Their values clearly support the fact that the model can generalize and that it can be used as a prototype for further research on network security enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2018)

  2. Ahmim, A., Derdour, M., Ferrag, M.A.: An intrusion detection system based on combining probability predictions of a tree of classifiers. Int. J. Commun. Syst. 31(9), e3547 (2018)

    Article  Google Scholar 

  3. Ahmim, A., Maglaras, L., Ferrag, M.A., Derdour, M., Janicke, H.: A novel hierarchical intrusion detection system based on decision tree and rules-based models. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 228–233. IEEE, May 2019

    Google Scholar 

  4. Android Malware Dataset. https://www.unb.ca/cic/datasets/andmal2017.html

  5. Berman, D.S., Buczak, A.L., Chavis, J.S., Corbett, C.L.: A survey of deep learning methods for cyber security. Information 10(4), 122 (2019)

    Article  Google Scholar 

  6. Bot-IoT Dataset. https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php. Accessed 8 Mar 2021

  7. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  8. Chambon, S., Galtier, M.N., Arnal, P.J., Wainrib, G., Gramfort, A.: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 758–769 (2018)

    Article  Google Scholar 

  9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  10. Cordonsky, I., Rosenberg, I., Sicard, G., David, E.O.: DeepOrigin: end-to-end deep learning for detection of new malware families. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, July 2018

    Google Scholar 

  11. CSE-CIC-IDS2018 Dataset. https://www.unb.ca/cic/datasets/ids-2018.html. Accessed 30 May 2019

  12. Ctu-13 Dataset. https://mcfp.weebly.com/the-ctu-13-dataset-a-labeleddataset-with-botnet-normal-and-background-traffic.html. Accessed 8 Mar 2021

  13. Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki, M., Clarke, N., Gritzalis, S.: Evaluation of anomaly-based IDS for mobile devices using machine learning classifiers. Secur. Commun. Netw. 5(1), 3–14 (2012)

    Article  Google Scholar 

  14. Demertzis, K., Iliadis, L., Bougoudis, I.: Gryphon: a semi-supervised anomaly detection system based on one-class evolving spiking neural network. Neural Comput. Appl. 32(9), 4303–4314 (2019). https://doi.org/10.1007/s00521-019-04363-x

    Article  Google Scholar 

  15. Demertzis, K., Iliadis, L., Tziritas, N., Kikiras, P.: Anomaly detection via blockchained deep learning smart contracts in industry 4.0. Neural Comput. Appl. 32(23), 17361–17378 (2020). https://doi.org/10.1007/s00521-020-05189-8

    Article  Google Scholar 

  16. Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive security operations center: adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data Cogn. Comput. 3(1), 6 (2019)

    Article  Google Scholar 

  17. Dillon, J.V., et al.: Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017)

  18. Gibert Llauradó, D.: Convolutional neural networks for malware classification. Master’s thesis, Universitat Politècnica de Catalunya (2016)

    Google Scholar 

  19. Kdd Cup (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed 8 Mar 2021

  20. Ketkar, N.: Introduction to Keras. In: Deep Learning with Python, pp. 97–111. Apress, Berkeley (2017)

    Google Scholar 

  21. Kitsune Network Attack Dataset. https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attack+Dataset. Accessed 8 Mar 2021

  22. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware system call sequences. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 137–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50127-7_11

    Chapter  Google Scholar 

  23. Kuypers, M.A., Maillart, T., Paté-Cornell, E.: An empirical analysis of cyber security incidents at a large organization. Department of Management Science and Engineering, Stanford University, School of Information, UC Berkeley, 30 (2016)

    Google Scholar 

  24. Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., Dai, K.: An efficient intrusion detection system based on support vector machines and gradually feature removal method. Expert Syst. Appl. 39(1), 424–430 (2012)

    Article  Google Scholar 

  25. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access 6, 3491–3508 (2017)

    Article  Google Scholar 

  26. Mahdavifar, S., Ghorbani, A.A.: Application of deep learning to cybersecurity: a survey. Neurocomputing 347, 149–176 (2019)

    Article  Google Scholar 

  27. Martin, E., Cundy, C.: Parallelizing linear recurrent neural nets over sequence length. arXiv preprint arXiv:1709.04057 (2017)

  28. Meidan, Y., et al.: N-BaIoT—network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 17(3), 12–22 (2018)

    Article  Google Scholar 

  29. Mirchev, A., Ahmadi, S.A.: Classification of sparsely labeled spatio-temporal data through semi-supervised adversarial learning. arXiv preprint arXiv:1801.08712 (2018)

  30. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  31. Mizuno, S., Hatada, M., Mori, T., Goto, S.: Botdetector: a robust and scalable approach toward detecting malware-infected devices. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE, May 2017

    Google Scholar 

  32. Nsl kdd. https://www.unb.ca/cic/datasets/nsl.html. Accessed 8 Mar 2021

  33. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  34. Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware classification with recurrent networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1916–1920. IEEE, April 2015

    Google Scholar 

  35. Psathas, A., Papaleonidas, A., Iliadis, L.: Machine learning modeling of human activity using PPG signals. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds.) ICCCI 2020. LNCS (LNAI), vol. 12496, pp. 543–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63007-2_42

    Chapter  Google Scholar 

  36. Psathas, A., Papaleonidas, A., Papathanassiou, G., Valkaniotis, S., Iliadis, L.: Classification of coseismic landslides using fuzzy and machine learning techniques. In: Iliadis, L., Angelov, P.P., Jayne, C., Pimenidis, E. (eds.) EANN 2020. PINNS, vol. 2, pp. 15–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48791-1_2

    Chapter  Google Scholar 

  37. Saleh, A.I., Talaat, F.M., Labib, L.M.: A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and optimized SVM classifiers. Artif. Intell. Rev. 51(3), 403–443 (2017). https://doi.org/10.1007/s10462-017-9567-1

    Article  Google Scholar 

  38. Shon, T., Moon, J.: A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177(18), 3799–3821 (2007)

    Article  Google Scholar 

  39. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

    Article  Google Scholar 

  40. Soe, Y.N., Feng, Y., Santosa, P.I., Hartanto, R., Sakurai, K.: Machine learning-based IoT-Botnet attack detection with sequential architecture. Sensors 20(16), 4372 (2020)

    Article  Google Scholar 

  41. Tensorflow. https://www.tensorflow.org/. Accessed 8 Mar 2021

  42. Thamilarasu, G., Chawla, S.: Towards deep-learning-driven intrusion detection for the internet of things. Sensors 19(9), 1977 (2019)

    Article  Google Scholar 

  43. Tor-Nontor Dataset. https://www.unb.ca/cic/datasets/tor.html. Accessed 8 Mar 2021

  44. Xie, M., Hu, J., Han, S., Chen, H.H.: Scalable hypergrid k-NN-based online anomaly detection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(8), 1661–1670 (2012)

    Article  Google Scholar 

  45. Yeung, D.S., Li, J.C., Ng, W.W., Chan, P.P.: MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 978–992 (2015)

    Article  MathSciNet  Google Scholar 

  46. Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural networks. Pattern Recogn. Lett. 26(6), 779–791 (2005)

    Article  Google Scholar 

  47. Zhang, Z.: Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–2. IEEE, June 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastasios Panagiotis Psathas or Antonios Papaleonidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Iliadis, L., Papaleonidas, A., Bountas, D. (2021). A Hybrid Deep Learning Ensemble for Cyber Intrusion Detection. In: Iliadis, L., Macintyre, J., Jayne, C., Pimenidis, E. (eds) Proceedings of the 22nd Engineering Applications of Neural Networks Conference. EANN 2021. Proceedings of the International Neural Networks Society, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-80568-5_3

Download citation

Publish with us

Policies and ethics