Skip to main content

Augmented, Virtual and Mixed Reality Passenger Experiences

  • Chapter
  • First Online:
User Experience Design in the Era of Automated Driving

Abstract

Mixed Reality (MR) headsets enable the rendering of virtual content selectively intermixed with reality. These headsets have the capacity to allow passengers to break free from the restraints of physical displays placed in constrained environments such as cars, trains and planes. Moreover, they have the potential to allow passengers to make better use of their time by making travel more productive and enjoyable, supporting both privacy and immersion. This is of particular note given the predicted adoption of autonomous vehicles. This chapter explores both the applications of MR headsets in passenger transit scenarios, and the key barriers to headset usage by passengers, ranging from impediments that would entirely prevent safe usage and function (e.g. motion sickness, see Chap. 1.6) to those that might impair their adoption (e.g. social acceptability). We discuss the key challenges that need to be overcome and the necessary research required to facilitate adoption and realise the potential advantages of using MR headsets in transit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.microsoft.com/en-gb/hololens.

  2. 2.

    www.oculus.com/quest/.

  3. 3.

    https://www.vive.com.

  4. 4.

    https://enterprise.vive.com/uk/product/vive-focus/.

  5. 5.

    For an example of this, see youtube.com/watch?v=eBs8biTWuEs.

  6. 6.

    www.tesla.com/model3.

  7. 7.

    https://group.volvocars.com/news/future-mobility/2019/varjo-collaboration.

References

  1. Russell, M., Price, R., Signal, L., Stanley, J., Gerring, Z., Cumming, J.: What do passengers do during travel time? Structured observations on buses and trains, pp. 123–146 (2011). https://doi.org/10.5038/2375-0901.14.3.7. https://scholarcommons.usf.edu/jpt/vol14/iss3/7/

  2. Hecht, T., Feldhütter, A., Draeger, K., Bengler, K.: What Do You Do? An Analysis of Non-driving Related Activities During a 60 Minutes Conditionally Automated Highway Drive. Springer, pp. 28–34 (2020). https://doi.org/10.1007/978-3-030-25629-6_5. https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-25629-6_5

  3. Milgram, P., Colquhoun, H.: A Taxonomy of Real and Virtual World Display Integration. Mixed Reality: Merging Real and Virtual Worlds, pp. 5–30 (1999)

    Google Scholar 

  4. Speicher, M., Hall, B.D., Nebeling, M.: What is mixed reality? In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems—CHI ’19, pp. 1–15. ACM Press, New York (2019). https://doi.org/10.1145/3290605.3300767. http://dl.acm.org/citation.cfm?doid=3290605.3300767

  5. Groening, S.: Aerial Screens, pp. 284–303. Routledge (2013). https://doi.org/10.1080/07341512.2013.858523. http://www.tandfonline.com/doi/abs/10.1080/07341512.2013.858523

  6. Ahmadpour, N., Lindgaard, G., Robert, J.M., Pownall, B.: The thematic structure of passenger comfort experience and its relationship to the context features in the aircraft cabin, pp. 801–815. Taylor & Francis (2014). https://doi.org/10.1080/00140139.2014.899632. https://doi.org/10.1080/00140139.2014.899632

  7. Patel, H., D’Cruz, M.: Passenger-Centric Factors Influencing the Experience of Aircraft Comfort, pp. 1–18. Routledge (2017). https://doi.org/10.1080/01441647.2017.1307877. https://www.tandfonline.com/doi/full/10.1080/01441647.2017.1307877

  8. Wilfinger, D., Meschtscherjakov, A., Murer, M., Osswald, S., Tscheligi, M.: Are We There Yet? A Probing Study to Inform Design for the Rear Seat of Family Cars, pp. 657–674. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-23771-3_48. http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-23771-3_48

  9. Pauzie, A.: Head Up Display in Automotive: A New Reality for the Driver, pp. 505–516. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-20889-3_47. http://dx.doi.org/10.1007/978-3-319-20889-3_47

  10. Haeuslschmid, R., Pfleging, B., Alt, F.: A design space to support the development of windshield applications for the car. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pp. 5076–5091. ACM, New York (2016). https://doi.org/10.1145/2858036.2858336. http://doi.acm.org/10.1145/2858036.2858336

  11. Häkkilä, J., Colley, A., Rantakari, J.: Exploring mixed reality window concept for car passengers. In: Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’14, pp. 1–4. ACM, New York (2014). https://doi.org/10.1145/2667239.2667288. http://doi.acm.org/10.1145/2667239.2667288

  12. Rao, Q., Grünler, C., Hammori, M., Chakraborty, S.: Design methods for augmented reality in-vehicle infotainment systems. In: Proceedings of the 51st Annual Design Automation Conference, DAC ’14, pp. 72:1–72:6. ACM, New York (2014). https://doi.org/10.1145/2593069.2602973. http://doi.acm.org/10.1145/2593069.2602973

  13. Rao, Q., Tropper, T., Grünler, C., Hammori, M., Chakraborty, S.: Arivi 2014; implementation of in-vehicle augmented reality. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 3–8 (2014). https://doi.org/10.1109/ISMAR.2014.6948402

  14. Kamen, M.: Ford patents windshield movie screen for driverless cars (2016). http://www.wired.co.uk/article/ford-patents-movie-window-for-driverless-cars

  15. Mercedes-Benz.: F015 Autonomous Concept Car (2016). https://www.mercedes-benz.com/en/mercedes-benz/innovation/research-vehicle-f-015-luxury-in-motion/

  16. Groening, S.: ‘No One Likes to Be a Captive Audience’: Headphones and in-Flight Cinema (2016). https://muse.jhu.edu/article/640056/summary

  17. Cummings, J.J., Bailenson, J.N., Fidler, M.J.: How immersive is enough? A meta-analysis of the effect of immersive technology on user presence, pp. 1–38. Routledge (2015). https://doi.org/10.1.1.363.6971. http://www.tandfonline.com/doi/abs/10.1080/15213269.2015.1015740

  18. Frangakis, N., Karaseitanidis, G., D’Cruz, M., Patel, H., Mohler, B., Bues, M., Helin, K.: Research Roadmap (2014). http://www.vr-hyperspace.eu

  19. Farias Zuniga, A.M., Côté, J.N.: Effects of Dual Monitor Computer Work Versus Laptop Work on Cervical Muscular and Proprioceptive Characteristics of Males and Females, pp. 546–563. SAGE Publications (2017). https://doi.org/10.1177/0018720816684690. http://journals.sagepub.com/doi/10.1177/0018720816684690

  20. Golding, J.F., Gresty, M.A.: Pathophysiology and Treatment of Motion Sickness, pp. 83–88 (2015). https://doi.org/10.1097/WCO.0000000000000163. http://www.ncbi.nlm.nih.gov/pubmed/25502048

  21. Diels, C., Bos, J.E.: User interface considerations to prevent self-driving carsickness. In: Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’15, pp. 14–19. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2809730.2809754. http://doi.acm.org/10.1145/2809730.2809754

  22. Elbanhawi, M., Simic, M., Jazar, R.: In the passenger seat: investigating ride comfort measures in autonomous cars, pp. 4–17 (2015). https://doi.org/10.1109/MITS.2015.2405571

  23. Mcgill, M., Kehoe, A., Freeman, E., Brewster, S.: Expanding the bounds of seated virtual workspaces. ACM Trans. Comput.-Hum. Interact. 27(3) (2020). https://doi.org/10.1145/3380959. https://doi.org/10.1145/3380959

  24. Lucero, A., Vetek, A.: Notifeye: using interactive glasses to deal with notifications while walking in public. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, ACE ’14, pp. 17:1–17:10. ACM, New York (2014). https://doi.org/10.1145/2663806.2663824. http://doi.acm.org/10.1145/2663806.2663824

  25. Chan, L.W., Kao, H.S., Chen, M.Y., Lee, M.S., Hsu, J., Hung, Y.P.: Touching the void: direct-touch interaction for intangible displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 2625–2634. ACM, New York (2010). https://doi.org/10.1145/1753326.1753725. http://doi.acm.org/10.1145/1753326.1753725

  26. McGill, M., Williamson, J.H., Brewster, S.: Examining The Role of Smart TVs and VR HMDs in Synchronous At-a-Distance Media Consumption, pp. 1–57. ACM (2016). https://doi.org/10.1145/2983530. http://dl.acm.org/citation.cfm?doid=3007191.2983530

  27. Orts-Escolano, S., Rhemann, C., Fanello, S., Chang, W., Kowdle, A., Degtyarev, Y., Kim, D., Davidson, P.L., Khamis, S., Dou, M., Tankovich, V., Loop, C., Cai, Q., Chou, P.A., Mennicken, S., Valentin, J., Pradeep, V., Wang, S., Kang, S.B., Kohli, P., Lutchyn, Y., Keskin, C., Izadi, S.: Holoportation: Virtual 3d teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pp. 741–754. ACM, New York (2016). https://doi.org/10.1145/2984511.2984517. http://doi.acm.org/10.1145/2984511.2984517

  28. Slater, M.: Place Illusion and Plausibility Can Lead to Realistic Behavior in Immersive Virtual Environments, pp. 3549–3557. The Royal Society (2009). https://doi.org/10.1098/rstb.2009.0138. http://rstb.royalsocietypublishing.org/content/364/1535/3549

  29. McGill, M., Ng, A., Brewster, S.: I am the passenger: how visual motion cues can influence sickness for in-car vr. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pp. 5655–5668. ACM, New York (2017). https://doi.org/10.1145/3025453.3026046. http://doi.acm.org/10.1145/3025453.3026046

  30. Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press (1975)

    Google Scholar 

  31. Zhang, L.L., Wang, J.Q., Qi, R.R., Pan, L.L., Li, M., Cai, Y.L.: Motion Sickness: Current Knowledge and Recent Advance, pp. 15–24 (2016). https://doi.org/10.1111/cns.12468. http://www.ncbi.nlm.nih.gov/pubmed/26452639

  32. Cappitelli, M., Group, A., D ’cruz, M.: Final Advisory Board Annual Report (2014). http://www.vr-hyperspace.eu

  33. Air France: Immersive headsets on board Air France flights (2017). http://corporate.airfrance.com/en/news/immersive-headsets-board-air-france-flights

  34. Qantas: Qantas & Samsung Unveil Industry-First Virtual Reality Experience for Travelers (2015). https://www.qantasnewsroom.com.au/media-releases/qantas-samsung-unveil-industry-first-virtual-reality-experience-for-travellers/

  35. Chittaro, L., Corbett, C.L., McLean, G., Zangrando, N.: Safety knowledge transfer through mobile virtual reality: a study of aviation life preserver donning, pp. 159–168. Elsevier (2018). https://doi.org/10.1016/J.SSCI.2017.10.012. https://www.sciencedirect.com/science/article/pii/S0925753517317228

  36. Gulliver: Virtual-reality headsets on planes mean we can isolate ourselves from irritating cabin-mates (2017). https://www.economist.com/blogs/gulliver/2017/01/flying-solo-together

  37. Holly, R.: Using VR on an airplane is surprisingly enjoyable with the right apps! (2017). https://www.vrheads.com/using-vr-airplane-surprisingly-enjoyable-right-apps

  38. Kuchera, B.: I’m the creepy guy wearing a VR headset on your plane (and it’s great) (2015). https://www.polygon.com/2015/3/27/8302453/im-the-creepy-guy-wearing-a-vr-headset-on-your-plane-and-its-great

  39. Dent, S.: Renault’s concept EV drove me at 80MPH while I wore a VR headset (2017). https://www.engadget.com/2017/12/13/renault-symbioz-concept-ev-vr-impressions/

  40. Rober, M., et al.: Immersive virtual display (2018). http://pdfaiw.uspto.gov/.aiw?PageNum=0&docid=20180089901. US Patent Application 2018/0089901

  41. Williamson, J.R., McGill, M., Outram, K.: Planevr: Social acceptability of virtual reality for aeroplane passengers. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pp. 80:1–80:14. ACM, New York (2019). https://doi.org/10.1145/3290605.3300310. http://doi.acm.org/10.1145/3290605.3300310

  42. McGill, M., Boland, D., Murray-Smith, R., Brewster, S.: A dose of reality: overcoming usability challenges in VR head-mounted displays. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15, pp. 2143–2152. ACM Press, New York (2015). https://doi.org/10.1145/2702123.2702382. http://dl.acm.org/citation.cfm?id=2702123.2702382

  43. Wienrich, C., Schindler, K.: Challenges and requirements of immersive media in autonomous car: exploring the feasibility of virtual entertainment applications. i-com 18(2), 105–125 (2019). https://doi.org/10.1515/icom-2018-0030. https://doi.org/10.1515/icom-2018-0030

  44. Lewis, L., Patel, H., Cobb, S., D’Cruz, M., Bues, M., Stefani, O., Grobler, T.: Distracting People from Sources of Discomfort in a Simulated Aircraft Environment, pp. 963–979 (2016). https://doi.org/10.3233/WOR-162356. http://eprints.nottingham.ac.uk/36254/1/VEs to distract people from sources of discomfort_v2_13_07_15.pdf

  45. Lewis, L., Patel, H., D’Cruz, M., Cobb, S.: What Makes a Space Invader? Passenger Perceptions of Personal Space Invasion in Aircraft Travel, pp. 1–10. Taylor & Francis (2017). https://doi.org/10.1080/00140139.2017.1313456. https://www.tandfonline.com/doi/full/10.1080/00140139.2017.1313456

  46. McGill, M., Williamson, J., Ng, A., Pollick, F., Brewster, S.: Challenges in Passenger Use of Mixed Reality Headsets in Cars and Other Transportation. Virtual Reality, pp. 1–21 (2019). https://doi.org/10.1007/s10055-019-00420-x. https://doi.org/10.1007/s10055-019-00420-x

  47. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33–33 (2008). https://doi.org/10.1167/8.3.33. https://doi.org/10.1167/8.3.33

  48. LaValle, S.M., Yershova, A., Katsev, M., Antonov, M.: Head tracking for the oculus rift. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 187–194 (2014). https://doi.org/10.1109/ICRA.2014.6906608

  49. Buckley, S.: This Is How Valve’s Amazing Lighthouse Tracking Technology Works (2015). http://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768

  50. Durrant-Whyte, H., Bailey, T.: Simultaneous Localization and Mapping: Part I, pp. 99–110 (2006). https://doi.org/10.1109/MRA.2006.1638022. http://ieeexplore.ieee.org/document/1638022/

  51. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment - IE2014, pp. 1–9. ACM Press, New York, New York (2014). https://doi.org/10.1145/2677758.2677780. http://dl.acm.org/citation.cfm?id=2677758.2677780

  52. Hock, P., Benedikter, S., Gugenheimer, J., Rukzio, E.: Carvr: enabling in-car virtual reality entertainment. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pp. 4034–4044. ACM, New York (2017). https://doi.org/10.1145/3025453.3025665. http://doi.acm.org/10.1145/3025453.3025665

  53. Skarredghost: All you need to know about SteamVR Tracking 2.0 (2017). https://skarredghost.com/2017/06/07/need-know-steamvr-tracking-2-0-will-foundation-vive-2/

  54. Antonov, M.: Asynchronous Timewarp examined (2015). https://developer.oculus.com/blog/asynchronous-timewarp-examined/

  55. The 360 Guy: The Ultimate VR Headset Comparison Table: Every VR Headset Compared (2019). https://www.threesixtycameras.com/vr-headset-comparison-table/

  56. Gekhman, D.: Mass of a Human Head (2006). http://hypertextbook.com/facts/2006/DmitriyGekhman.shtml

  57. Koisaari, T., Leivo, T., Sahraravand, A., Haavisto, A.K., Sulander, P., Tervo, T.M.T.: Airbag Deployment–Related Eye Injuries, pp. 1–7. Taylor & Francis (2017). https://doi.org/10.1080/15389588.2016.1271945. https://www.tandfonline.com/doi/full/10.1080/15389588.2016.1271945

  58. Tervo, T., Sulander, P.: Spectacle wear, airbag deployment and eye trauma (2014). http://iovs.arvojournals.org/article.aspx?articleid=2271072

  59. Tsuda, Y., Wakiyama, H., Amemiya, T.: Ocular injury caused by an air bag for a driver wearing eyeglasses. pp. 239–40 (1999). http://www.ncbi.nlm.nih.gov/pubmed/10413260

  60. Meschtscherjakov, A., Strumegger, S., Trösterer, S.: Bubble margin: Motion sickness prevention while reading on smartphones in vehicles. In: D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, P. Zaphiris (eds.) Human-Computer Interaction - INTERACT 2019, pp. 660–677. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  61. Carter, L., Paroz, A.W.L., Potter, L.E.: Observations and opportunities for deploying virtual reality for passenger boats. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, pp. 1–6. ACM Press, New York, New York (2018). https://doi.org/10.1145/3170427.3188615. http://dl.acm.org/citation.cfm?doid=3170427.3188615

  62. Stevens, A.H., Butkiewicz, T.: Reducing seasickness in onboard marine VR use through visual compensation of vessel motion. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1872–1873. IEEE (2019). https://doi.org/10.1109/VR.2019.8797800. https://ieeexplore.ieee.org/document/8797800/

  63. Wienrich, C., Zachoszcz, M., Schlippe, M.v., Packhäuser, R.: Pilotstudie: Einsatz von mobilen vr-anwendungen in gleichmäßig und ruhig bewegten transportsystemen. Gesellschaft für Informatik eV (2017)

    Google Scholar 

  64. Sawabe, T., Kanbara, M., Hagita, N.: Diminished reality for acceleration stimulus: motion sickness reduction with vection for autonomous driving. In: 2017 IEEE Virtual Reality (VR), pp. 277–278. IEEE (2017). https://doi.org/10.1109/VR.2017.7892284. http://ieeexplore.ieee.org/document/7892284/

  65. Soyka, F., Kokkinara, E., Leyrer, M., Buelthoff, H., Slater, M., Mohler, B.: Turbulent motions cannot shake vr. In: 2015 IEEE Virtual Reality (VR), pp. 33–40 (2015). https://doi.org/10.1109/VR.2015.7223321

  66. Carter, L., Paroz, A.W.L., Potter, L.E.: Observations and opportunities for deploying virtual reality for passenger boats. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA ’18, pp. LBW118:1–LBW118:6. ACM, New York (2018). https://doi.org/10.1145/3170427.3188615. http://doi.acm.org/10.1145/3170427.3188615

  67. Sra, M., Jain, A., Maes, P.: Adding proprioceptive feedback to virtual reality experiences using galvanic vestibular stimulation. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pp. 1–14. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3290605.3300905. https://doi.org/10.1145/3290605.3300905

  68. Kuiper, O.X., Bos, J.E., Diels, C.: Looking Forward: In-Vehicle Auxiliary Display Positioning Affects Carsickness, pp. 169–175. Elsevier (2018). https://doi.org/10.1016/J.APERGO.2017.11.002. https://www.sciencedirect.com/science/article/pii/S000368701730251X

  69. Iskander, J., Attia, M., Saleh, K., Nahavandi, D., Abobakr, A., Mohamed, S., Asadi, H., Khosravi, A., Lim, C.P., Hossny, M.: From car sickness to autonomous car sickness: a review. Transp Res Part F Traffic Psychol Behav 62, 716–726 (2019). https://doi.org/10.1016/j.trf.2019.02.020. http://www.sciencedirect.com/science/article/pii/S1369847818308581

  70. Wilson, G., McGill, M., Jamieson, M., Williamson, J.R.R., Brewster, S.A.: Object manipulation in virtual reality under increasing levels of translational gain. In: Proceedings of CHI ’18. ACM Press, New York (2018). http://orcid.org/10.1145/3173574.3173673. http://dl.acm.org/citation.cfm?doid=3173574.3173673

  71. Diels, C.: Visually induced motion sickness. Ph.D. thesis (2008). https://dspace.lboro.ac.uk/2134/13442

  72. Redlick, F.P., Jenkin, M., Harris, L.R.: Humans Can Use Optic Flow to Estimate Distance of Travel, pp. 213–219. Pergamon (2001). https://doi.org/10.1016/S0042-6989(00)00243-1. https://www.sciencedirect.com/science/article/pii/S0042698900002431

  73. LaViola Jr., J.J.: A Discussion of Cybersickness in Virtual Environments, pp. 47–56. ACM, New York (2000). https://doi.org/10.1145/333329.333344. http://doi.acm.org/10.1145/333329.333344

  74. Karjanto, J., Md. Yusof, N., Wang, C., Terken, J., Delbressine, F., Rauterberg, M.: The Effect of Peripheral Visual Feedforward System in Enhancing Situation Awareness and Mitigating Motion Sickness in Fully Automated Driving, pp. 678–692. Pergamon (2018). https://doi.org/10.1016/J.TRF.2018.06.046. https://www.sciencedirect.com/science/article/pii/S1369847818300913

  75. Cevette, M.J., Stepanek, J., Cocco, D., Galea, A.M., Pradhan, G.N., Wagner, L.S., Oakley, S.R., Smith, B.E., Zapala, D.A., Brookler, K.H.: Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness, pp. 549–555 (2012). https://doi.org/10.3357/ASEM.3239.2012

  76. Gálvez-García, G., Aldunate, N., Bascour-Sandoval, C., Barramuño, M., Fonseca, F., Gómez-Milán, E.: Decreasing motion sickness by mixing different techniques. Appl. Ergon. 82, 102931 (2020). https://doi.org/10.1016/j.apergo.2019.102931. http://www.sciencedirect.com/science/article/pii/S0003687019301589

  77. Fitzpatrick, R.C., Day, B.L.: Probing the human vestibular system with galvanic stimulation. Journal of applied physiology 96(6), 2301–2316 (2004)

    Article  Google Scholar 

  78. Aoyama, K., Iizuka, H., Ando, H., Maeda, T.: Four-pole galvanic vestibular stimulation causes body sway about three axes. Sci. Rep. 5, 10168 (2015). https://doi.org/10.1038/srep10168. https://doi.org/10.1038/srep10168

  79. Weech, S., Wall, T., Barnett-Cowan, M.: Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Exp. Brain Res., pp. 1–11 (2020). https://doi.org/10.1007/s00221-019-05718-5. https://doi.org/10.1007/s00221-019-05718-5

  80. Arshad, Q., Cerchiai, N., Goga, U., Nigmatullina, Y., Roberts, R.E., Casani, A.P., Golding, J.F., Gresty, M.A., Bronstein, A.M.: Electrocortical therapy for motion sickness, pp. 1257–9. American Academy of Neurology (2015). https://doi.org/10.1212/WNL.0000000000001989. http://www.ncbi.nlm.nih.gov/pubmed/26341870

  81. Milar, K.S.: William james and the sixth sense. Monitor on Psychology 43(8), 22 (2012)

    Google Scholar 

  82. Weech, S., Troje, N.F.: Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation. Multisensory Research 30(1), 65–90 (2017)

    Article  Google Scholar 

  83. Wiliamson, J.R., Crossan, A., Brewster, S.: Multimodal mobile interactions: usability studies in real world settings. In: Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI ’11, pp. 361–368. ACM, New York (2011). https://doi.org/10.1145/2070481.2070551. http://doi.acm.org/10.1145/2070481.2070551

  84. Baseel, C.: Japanese people least likely to talk to strangers or offer help on airplanes, survey finds (2014). https://japantoday.com/category/features/lifestyle/japanese-people-least-likely-to-talk-to-strangers-or-offer-help-on-airplanes-survey-finds

  85. Smith, M.: Londoners are the most embarassed by talking to strangers (2016). https://yougov.co.uk/topics/politics/articles-reports/2016/10/03/londoners-are-least-pleased-prospect-talking-stran

  86. Studarus, L.: How the Finnish survive without small talk (2018). http://www.bbc.com/travel/story/20181016-how-the-finnish-survive-without-small-talk

  87. McGill, M., Brewster, S., McGookin, D., Wilson, G.: Acoustic transparency and the changing soundscape of auditory mixed reality. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, pp. 1–16. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3313831.3376702. https://doi.org/10.1145/3313831.3376702

  88. O’Hagan, J., Williamson, J.R.: Reality aware vr headsets. In: Proceedings of the 9TH ACM International Symposium on Pervasive Displays, PerDis ’20, pp. 9–17. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3393712.3395334. https://doi.org/10.1145/3393712.3395334

  89. Subramanyam, S., Li, J., Viola, I., Cesar, P.: Comparing the quality of highly realistic digital humans in 3dof and 6dof: a volumetric video case study. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 127–136 (2020). https://doi.org/10.1109/VR46266.2020.00031. https://doi.org/10.1109/VR46266.2020.00031

  90. Boland, D., McGill, M.: Lost in the rift, pp. 40–45. ACM (2015). https://doi.org/10.1145/2810046. http://dl.acm.org/ft_gateway.cfm?id=2810046&type=html

  91. VIVE Blog: Introducing the Logitech BRIDGE SDK (2018). https://blog.vive.com/us/2017/11/02/introducing-the-logitech-bridge-sdk/

  92. Schmelter, T., Hildebrand, K.: Analysis of interaction spaces for vr in public transport systems. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 279–280 (2020)

    Google Scholar 

  93. Rico, J., Brewster, S.: Usable gestures for mobile interfaces: evaluating social acceptability. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 887–896. ACM, New York (2010). https://doi.org/10.1145/1753326.1753458. http://doi.acm.org/10.1145/1753326.1753458

  94. Marshall, J., Dancu, A., Mueller, F.F.: Interaction in motion: designing truly mobile interaction. In: Proceedings of the 2016 ACM Conference on Designing Interactive Systems, DIS ’16, pp. 215–228. ACM, New York (2016). https://doi.org/10.1145/2901790.2901844. http://doi.acm.org/10.1145/2901790.2901844

  95. Toppan, R., Chiesa, M.: Integrating a touchless UI in the automotive environment. In: Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’15 (2015). http://www.auto-ui.org/15/p/workshops/5/toppan.pdf

  96. Wang, S., Song, J., Lien, J., Poupyrev, I., Hilliges, O.: Interacting with soli: exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pp. 851–860. ACM, New York (2016). https://doi.org/10.1145/2984511.2984565. http://doi.acm.org/10.1145/2984511.2984565

  97. Hong, S., Kim, G.J.: Accelerated viewpoint panning with rotational gain in 360 degree videos. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology—VRST ’16, pp. 303–304. ACM Press, New York (2016). https://doi.org/10.1145/2993369.2996309. http://dl.acm.org/citation.cfm?doid=2993369.2996309

  98. Ahmad, B.I., Langdon, P.M., Godsill, S.J., Hardy, R., Skrypchuk, L., Donkor, R.: Touchscreen usability and input performance in vehicles under different road conditions: an evaluative study. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’15, pp. 47–54. ACM, New York (2015). https://doi.org/10.1145/2799250.2799284. http://doi.acm.org/10.1145/2799250.2799284

  99. Burnett, G., Crundall, E., Large, D., Lawson, G., Skrypchuk, L.: A study of unidirectional swipe gestures on in-vehicle touch screens. In: Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’13, pp. 22–29. ACM, New York(2013). https://doi.org/10.1145/2516540.2516545. http://doi.acm.org/10.1145/2516540.2516545

  100. Ng, A., Brewster, S.A.: Investigating pressure input and haptic feedback for in-car touchscreens and touch surfaces. In: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications—Automotive’UI 16, pp. 121–128. ACM Press, New York (2016). https://doi.org/10.1145/3003715.3005420. http://dl.acm.org/citation.cfm?doid=3003715.3005420

  101. Ng, A., Brewster, S.A., Beruscha, F., Krautter, W.: An evaluation of input controls for in-car interactions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pp. 2845–2852. ACM, New York (2017). https://doi.org/10.1145/3025453.3025736. http://doi.acm.org/10.1145/3025453.3025736

  102. Frisson, C., Julien, D., Pietrzak, T., Ng, A., Poncet, P., Casset, F., Latour, A., Brewster, S.: Designing vibrotactile widgets with printed actuators and sensors. In: Adjunct Proceedings of the 2017 ACM Symposium on User Interface Software and Technology (UIST), UIST ’17. ACM (2017)

    Google Scholar 

  103. Durbin, J.: The Oculus Acquisition May Cost Facebook $3 Billion, Not $2.3 Billion (2017). https://uploadvr.com/oculus-acquisition-3-billion/

  104. VRChat: VRChat social VR application (2018). https://www.vrchat.net/

  105. Fanello, S., Rhemann, S.O.e.C., Dou, M., Tankovich, V., Loop, C., Chou, P.: Holoportation: virtual 3D teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), pp. 741–754 (2016). https://doi.org/10.1145/2984511.2984517. http://dx.doi.org/10.1145/2984511.2984517

  106. Hoffman, M.: Remote collaboration with multiple avatars. In: Microsoft Build Developer Conference (2016). https://vimeo.com/160704056

  107. Pots, J.: Collaborating with Holograms: Could ‘Mixed Reality‘ be the Future of Telecommuting? (2016). https://www.digitaltrends.com/virtual-reality/hololens-mixed-reality-work-tool-object-theory/

  108. Kun, A.L., van der Meulen, H., Janssen, C.P.: Calling while driving: an initial experiment with Hololens. In: Proceedings of the 9th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design (2017)

    Google Scholar 

  109. Marshall, J., Benford, S., Byrne, R., Tennent, P.: Sensory Alignment in Immersive Entertainment. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems—CHI ’19, pp. 1–13. ACM Press, New York (2019). https://doi.org/10.1145/3290605.3300930. http://dl.acm.org/citation.cfm?doid=3290605.3300930

  110. Kodama, R., Koge, M., Taguchi, S., Kajimoto, H.: COMS-VR: Mobile virtual reality entertainment system using electric car and head-mounted display. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 130–133. IEEE (2017). https://doi.org/10.1109/3DUI.2017.7893329. http://ieeexplore.ieee.org/document/7893329/

  111. Simeone, A.L., Velloso, E., Gellersen, H.: Substitutional reality: using the physical environment to design virtual reality experiences. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 3307–3316. ACM, New York (2015). https://doi.org/10.1145/2702123.2702389. http://doi.acm.org/10.1145/2702123.2702389

  112. Goedicke, D., Li, J., Evers, V., Ju, W.: VR-OOM: Virtual reality on-road driving simulation. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems—CHI ’18, pp. 1–11. ACM Press, New York (2018). https://doi.org/10.1145/3173574.3173739. http://dl.acm.org/citation.cfm?doid=3173574.3173739

  113. Paredes, P.E., Balters, S., Qian, K., Murnane, E.L., Ordóñez, F., Ju, W., Landay, J.A.: Driving with the Fishes: Towards Calming and Mindful Virtual Reality Experiences for the Car, pp. 1–21. ACM (2018). https://doi.org/10.1145/3287062. http://dl.acm.org/citation.cfm?doid=3301777.3287062

  114. Baldwin, A., Eriksson, J., Olsson, C.M.: Bus runner: using contextual cues for procedural generation of game content on public transport. In: International Conference on Human-Computer Interaction, pp. 21–34. Springer (2017). https://doi.org/10.1007/978-3-319-58077-7_2. https://doi.org/10.1007/978-3-319-58077-7_2

  115. Hanau, E., Popescu, V.: Motionreader: visual acceleration cues for alleviating passenger e-reader motion sickness. In: Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct, AutomotiveUI ’17, pp. 72–76. ACM, New York (2017). https://doi.org/10.1145/3131726.3131741. http://doi.acm.org/10.1145/3131726.3131741

  116. Wilson, G., McGill, M., Jamieson, M., Williamson, J.R., Brewster, S.A.: Object manipulation in virtual reality under increasing levels of translational gain. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pp. 99:1–99:13. ACM, New York (2018). https://doi.org/10.1145/3173574.3173673. http://doi.acm.org/10.1145/3173574.3173673

  117. Ion, F.: Too sick to stand: what it’s like to ride the first vr video game roller coaster (2016). https://www.vrheads.com/too-sick-stand-ride-first-ever-vr-video-game-roller-coaster

  118. Miscellaneous: Holoride—Turning Vehicles into Moving Theme Parks (2020). https://www.holoride.com/

  119. Large, D.R., Burnett, G., Bolton, A.: Augmenting Landmarks During the Head-Up Provision of In-Vehicle Navigation Advice, pp. 18–38. IGI Global (2017). https://doi.org/10.4018/IJMHCI.2017040102. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJMHCI.2017040102

  120. Skarredghost: virtual reality is reaching a mature state according to Gartner—the Ghost Howls (2018). https://skarredghost.com/2018/08/27/virtual-reality-is-reaching-a-mature-state-according-to-gartner/

  121. Feltham, J.: Microsoft: VR Headsets ’Didn’t Meet High Expectations’ (2019). https://uploadvr.com/windows-vr-expectations/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark McGill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGill, M. et al. (2022). Augmented, Virtual and Mixed Reality Passenger Experiences. In: Riener, A., Jeon, M., Alvarez, I. (eds) User Experience Design in the Era of Automated Driving. Studies in Computational Intelligence, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-77726-5_17

Download citation

Publish with us

Policies and ethics