Skip to main content

Deep Reinforcement Learning Modeling of a V2V Communication-Based Bike Avoidance Protocol for Increased Vehicular Flow

  • Chapter
  • First Online:
Computational Intelligence in Recent Communication Networks

Abstract

Autonomous Traffic Management (ATM) is a growing field of Intelligent Transportation Systems (ITSs) that aims to replace conventional traffic signals with more efficient cooperative systems. Accordingly, it relays on vehicular communication for sharing awareness messages and hence to enable Autonomous Vehicles (AVs) to make effective control decision to optimize their traffic delay. Nonetheless, little focus has been placed on the insertion of bicycles in the ATM. Moreover, no research, to our knowledge, has studied the benefit of the application of Deep Reinforcement Learning (DRL) to integrate cyclists in these distributed systems. To fill this gap, we propose first a Markov Decision Process (MDP) modeling for this scenario. Then, we investigate the use of Deep Q-Learning to optimize vehicle time loss. Finally, we discuss deeply the performance of our proposed DRL-based solution compared to similar traditional programming-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Bäumler, H. Kotzab, The emergence of intelligent transportation systems from a continental and technological perspective. World Rev. Intermodal. Transp. Res. 9, 199–216 (2020). https://doi.org/10.1504/WRITR.2020.108220

    Article  Google Scholar 

  2. S. El Hamdani, N. Benamar, A comprehensive study of intelligent transportation system architectures for road congestion avoidance. Lect. Notes Comput. Sci. (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 10542 LNCS:95–106. (2017), doi:https://doi.org/10.1007/978-3-319-68179-5_9

  3. A. Boukerche, J. Wang, Machine learning-based traffic prediction models for intelligent transportation systems. Comput. Netw. 181, 107530 (2020). https://doi.org/10.1016/j.comnet.2020.107530

    Article  Google Scholar 

  4. Y. Lian, G. Zhang, J. Lee, H. Huang, Review on big data applications in safety research of intelligent transportation systems and connected/automated vehicles. Accid. Anal. Prev. 146, 105711 (2020). https://doi.org/10.1016/j.aap.2020.105711

    Article  Google Scholar 

  5. S. Kaffash, A.T. Nguyen, J. Zhu, Big data algorithms and applications in intelligent transportation system: a review and bibliometric analysis. Int. J. Prod. Econ. 231, 107868 (2021). https://doi.org/10.1016/j.ijpe.2020.107868

    Article  Google Scholar 

  6. F. Arena, G. Pau, A. Severino, A review on IEEE 802.11p for intelligent transportation systems. J. Sens Actuator Networks 9, 1–11 (2020). https://doi.org/10.3390/jsan9020022

    Article  Google Scholar 

  7. D. Sirohi, N. Kumar, P.S. Rana, Convolutional neural networks for 5G-enabled intelligent transportation system: a systematic review. Comput. Commun. 153, 459–498 (2020). https://doi.org/10.1016/j.comcom.2020.01.058

    Article  Google Scholar 

  8. M. Ouaissa, M. Houmer, M. Ouaissa, An enhanced authentication protocol based group for vehicular communications over 5G networks, in 3rd Int Conf Adv Commun Technol Networking, CommNet, (2020). doi:https://doi.org/10.1109/CommNet49926.2020.9199641

  9. I. Laña, J.J. Sanchez-Medina, E.I. Vlahogianni, S.J. Del, From data to actions in intelligent transportation systems: a prescription of functional requirements for model actionability. arXiv (2020)

    Google Scholar 

  10. M. Ouaissa, M. Ouaissa, M. Houmer, Improved MAC design-based dynamic duty cycle for vehicular communications over M2M system, in: Springer (ed) Data Analytics and Management. (Singapore, 2021), pp 111–120

    Google Scholar 

  11. S. Hamdani El, Benamar N, Autonomous traffic management: open issues and new directions: International conference on selected topics in mobile and wireless networking (MoWNeT), pp. 1–5 (2018). https://doi.org/10.1109/MoWNet.2018.8428937

  12. S. El Hamdani, N. Benamar, M. Younis, Pedestrian support in intelligent transportation systems: challenges, solutions and open issues. Transp. Res. Part C Emerg. Technol. 121, 102856 (2020). https://doi.org/10.1016/j.trc.2020.102856

    Article  Google Scholar 

  13. S. El Hamdani, N. Benamar, M. Younis, A protocol for pedestrian crossing and increased vehicular flow in smart cities. J. Intell. Transp. Syst. Technol. Planning, Oper. 0, 1–20 (2019). https://doi.org/10.1080/15472450.2019.1683451

    Article  Google Scholar 

  14. S. ElHamdani, N. Benamar, DBDA: distant bicycle detection and avoidance protocol based on V2V communication for autonomous vehicle-bicycle road share, in 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS 2019. IEEE, (2019), pp. 1–6

    Google Scholar 

  15. J. Kovaceva, A. Bálint, R. Schindler, A. Schneider, Safety benefit assessment of autonomous emergency braking and steering systems for the protection of cyclists and pedestrians based on a combination of computer simulation and real-world test results. Accid. Anal. Prev. 136, 105352 (2020). https://doi.org/10.1016/j.aap.2019.105352

    Article  Google Scholar 

  16. B.Q. Huang, G.Y. Cao, M. Guo, Reinforcement learning neural network to the problem of autonomous mobile robot obstacle avoidance. Int. Conf. Mach. Learn. Cybern. ICMLC 2005, 85–89 (2005). https://doi.org/10.1109/icmlc.2005.1526924

    Article  Google Scholar 

  17. R. Emuna, A. Borowsky, A. Biess, Deep reinforcement learning for human-like driving policies in collision avoidance tasks of self-driving cars. arXiv (2020)

    Google Scholar 

  18. Z. Sui, Z. Pu, J. Yi, T. Xiong, Formation control with collision avoidance through deep reinforcement learning using model-guided demonstration. Proc. Int. Jt. Conf. Neural Networks, (2019) pp. 1–15. doi:https://doi.org/10.1109/IJCNN.2019.8851906

  19. T. Fan, P. Long, W. Liu, J. Pan, Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. Int. J. Robot. Res. 39, 856–892 (2020). https://doi.org/10.1177/0278364920916531

    Article  Google Scholar 

  20. P. Wang, C.Y. Chan, Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge. arXiv (2017)

    Google Scholar 

  21. J. Li, L. Yao, X. Xu, et al., Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving. Inf. Sci. (Ny) 532, 110–124 (2020). https://doi.org/10.1016/j.ins.2020.03.105

    Article  Google Scholar 

  22. M. Everett, Y.F. Chen, J.P. How, Collision avoidance in pedestrian-rich environments with deep reinforcement learning. IEEE Access 9, 10357–10377 (2021). https://doi.org/10.1109/ACCESS.2021.3050338

    Article  Google Scholar 

  23. S.S. Mousavi, M. Schukat, E. Howley, Deep reinforcement learning: an overview. Lect. Notes Networks Syst. 16, 426–440 (2018). https://doi.org/10.1007/978-3-319-56991-8_32

    Article  Google Scholar 

  24. E.N. Barron, H. Ishii, The Bellman equation for minimizing the maximum cost. Nonlinear Anal. 13, 1067–1090 (1989). https://doi.org/10.1016/0362-546X(89)90096-5

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Hester, M. Vecerik, O. Pietquin, et al., Deep q-learning from demonstrations. arXiv, 3223–3230 (2017)

    Google Scholar 

  26. K.G. Sheela, S.N. Deepa, Selection of number of hidden neurons in neural networks in renewable energy systems. J. Sci. Ind. Res. (India) 73, 686–688 (2014)

    Google Scholar 

  27. A. Araujo, B. Negrevergne, Y. Chevaleyre, J. Atif, On the Expressive Power of Deep Fully Circulant Neural Networks. arXiv (2017)

    Google Scholar 

  28. S. Chang, T. Cohen, B. Ostdiek, What is the machine learning? Phys. Rev. D 97, 56009 (2018). https://doi.org/10.1103/PhysRevD.97.056009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara El Hamdani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamdani, S.E., Loudari, S., Ouaissa, M., Ouaissa, M., Benamar, N. (2022). Deep Reinforcement Learning Modeling of a V2V Communication-Based Bike Avoidance Protocol for Increased Vehicular Flow. In: Ouaissa, M., Boulouard, Z., Ouaissa, M., Guermah, B. (eds) Computational Intelligence in Recent Communication Networks . EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-77185-0_8

Download citation

Publish with us

Policies and ethics