Skip to main content

Household-Scale Data and Analytical Approaches

  • Chapter
  • First Online:
International Handbook of Population and Environment

Part of the book series: International Handbooks of Population ((IHOP,volume 10))

  • 740 Accesses

Abstract

Much of today’s population-environment research centers on the interaction between households and individuals and their natural environment. The microdata used for such analyses are diverse with respect to their structure, substantive content, and geographic and temporal scope, raising both costs and benefits to users. The goal of this chapter is to put such issues in context by reviewing the major sources of household-level data and corresponding analytic methods used to examine the relationship between environmental change and demographic outcomes among individuals and households. In addition to reviewing examples of census, survey, surveillance, and administrative data, this chapter discusses key issues about the measurement of environmental exposures, adjustment for confounding variables, identification of causal pathways, and substantive interpretation of findings. It concludes by discussing opportunities for innovation, including in the manner that existing data are disseminated and in new data collection efforts. The recent, rapid expansion and improvement of data and methods provides population-environment researchers with many novel opportunities, but fundamental questions about conceptualization, measurement, and modeling remain salient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This chapter focuses on studies of demographic outcomes at the household or individual levels. It is also possible to aggregate household-scale data up to study ecological relationships (e.g., Abel et al., 2019; Mastrorillo et al., 2016). However, with one exception, such approaches are excluded from this discussion for brevity.

  2. 2.

    In many cases, a representative sample (e.g., 1%, 5%) of the census data is released to the public for analysis.

  3. 3.

    County identifiers are suppressed for some counties in the public-use samples to maintain confidentiality.

  4. 4.

    While many population-environment researchers would prefer such data to be collected on a higher-frequency basis (Fussell et al., 2014b; Headey & Barrett 2015), such longer inter-censal intervals are likely preferred by implementing governments, citizens, and other stakeholders. Indeed, given resource constraints and the track record of censuses globally, a consistently implemented decadal census would represent a considerable improvement over the status quo.

  5. 5.

    Even among the surveys that lack these geocodes, geographic identifiers and corresponding GIS data for first-order sub-national units are widely available.

  6. 6.

    To reduce disclosure risk, the location of urban clusters (i.e., communities) are displaced up to two kilometers, and the location of rural clusters is displaced by up to five kilometers, with an additional (randomly selected) 1% of rural clusters displaced by up to 10 km. This displacement does have non-trivial consequences for estimating the effects of some contextual variables, particularly those measuring distance to a given point (Elkies et al., 2015). See Grace et al. (2019) for further discussion.

  7. 7.

    Evidence of systematic misreporting of birth month (Larsen et al., 2019) suggests caution is needed when constructing such datasets at a monthly resolution.

  8. 8.

    The most common data on migration in these surveys includes (a) years in current residence; and (b) type of place of previous residence (e.g., rural vs. urban). However, even these two basic variables have not been collected in every round of the DHS. Notably, a number of recent DHS surveys have included information on place of previous residence (e.g., region of previous residence in the 2016 Ethiopian DHS).

  9. 9.

    These systems are sometimes also referred to as Health and Demographic Surveillance Sites (HDSSs).

  10. 10.

    A number of other studies have used U.S. Internal Revenue Service tax return data to study the effects of environmental change on migration. These important studies—including Curtis et al. (2015), Fussell et al. (2014a), and Hauer (2017)—aggregate these data (e.g., to the county level) and conduct ecological analyses, and are therefore not featured in the text above.

  11. 11.

    It is common to use the spatial mean, but conceptually it is possible to develop other measures of exposure such as population-weighted means.

References

  • Abel, G. J., Brottrager, M., Cuaresma, J. C., & Muttarak, R. (2019). Climate, conflict and forced migration. Global Environmental Change, 54, 239–249.

    Article  Google Scholar 

  • Abramson, D., Stehling-Ariza, T., Garfield, R., & Redlener, I. (2008). Prevalence and predictors of mental health distress post-Katrina: Findings from the Gulf Coast Child and Family Health Study. Disaster Medicine and Public Health Preparedness, 2(2), 77–86.

    Article  Google Scholar 

  • Anglewicz, P., & Myroniuk, T. W. (2018). Shocks and migration in Malawi. Demographic Research, 38, 321–334.

    Article  Google Scholar 

  • Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press.

    Book  Google Scholar 

  • Asfaw, S., & Maggio, G. (2018). Gender, weather shocks and welfare: Evidence from Malawi. The Journal of Development Studies, 54(2), 271–291.

    Article  Google Scholar 

  • Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy, 7(2), 181–198.

    Article  Google Scholar 

  • Bahru, B. A., Bosch, C., Birner, R., & Zeller, M. (2019). Drought and child undernutrition in Ethiopia: A longitudinal path analysis. PLoS One, 14(6), e0217821.

    Article  Google Scholar 

  • Bakhtsiyarava, M., Grace, K., & Nawrotzki, R. J. (2018). Climate, birth weight, and agricultural livelihoods in Kenya and Mali. American Journal of Public Health, 108(S2), S144–S150.

    Article  Google Scholar 

  • Bandyopadhyay, S., Kanji, S., & Wang, L. (2012). The impact of rainfall and temperature variation on diarrheal prevalence in Sub-Saharan Africa. Applied Geography, 33, 63–72.

    Article  Google Scholar 

  • Banerjee, R., & Maharaj, R. (2020). Heat, infant mortality, and adaptation: Evidence from India. Journal of Development Economics, 143, 102378.

    Article  Google Scholar 

  • Behrman, J. A., & Weitzman, A. (2016). Effects of the 2010 Haiti earthquake on women's reproductive health. Studies in Family Planning, 47(1), 3–17.

    Article  Google Scholar 

  • Beuermann, D. W., & Pecha, C. (2020). The effects of weather shocks on early childhood development: Evidence from 2years of tropical storms. Economics & Human Biology, 100851.

    Google Scholar 

  • Bohle, H. G., Downing, T. E., & Watts, M. J. (1994). Climate change and social vulnerability: Toward a sociology and geography of food insecurity. Global Environmental Change, 4(1), 37–48.

    Article  Google Scholar 

  • Bohra-Mishra, P., Oppenheimer, M., & Hsiang, S. M. (2014). Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proceedings of the National Academy of Sciences, 111(27), 9780–9785.

    Article  Google Scholar 

  • Bohra-Mishra, P., Oppenheimer, M., Cai, R., Feng, S., & Licker, R. (2017). Climate variability and migration in the Philippines. Population and Environment, 38(3), 286–308.

    Article  Google Scholar 

  • Bremner, J., Bilsborrow, R., Feldacker, C., & Holt, F. L. (2009). Fertility beyond the frontier: Indigenous women, fertility, and reproductive practices in the Ecuadorian Amazon. Population and Environment, 30(3), 93–113.

    Article  Google Scholar 

  • Cahoon, L. S. (2006). The current population survey response to Hurricane Katrina. Monthly Labor Review, 129, 40–51.

    Google Scholar 

  • Call, M., Gray, C., & Jagger, P. (2019). Smallholder responses to climate anomalies in rural Uganda. World Development, 115, 132–144.

    Article  Google Scholar 

  • Call, M. A., Gray, C., Yunus, M., & Emch, M. (2017). Disruption, not displacement: Environmental variability and temporary migration in Bangladesh. Global Environmental Change, 46, 157–165.

    Article  Google Scholar 

  • Carrico, A. R., & Donato, K. (2019). Extreme weather and migration: Evidence from Bangladesh. Population and Environment, 41(1), 1–31.

    Article  Google Scholar 

  • Chen, J., & Mueller, V. (2018). Coastal climate change, soil salinity and human migration in Bangladesh. Nature Climate Change, 8(11), 981.

    Article  Google Scholar 

  • Clifford, D., Falkingham, J., & Hinde, A. (2010). Through civil war, food crisis and drought: Trends in fertility and nuptiality in post-Soviet Tajikistan. European Journal of Population, 26(3), 325–350.

    Article  Google Scholar 

  • Crowder, K., & Downey, L. (2010). Interneighborhood migration, race, and environmental hazards: Modeling microlevel processes of environmental inequality. American Journal of Sociology, 115(4), 1110–1149.

    Article  Google Scholar 

  • Currie, J., Greenstone, M., & Meckel, K. (2017). Hydraulic fracturing and infant health: New evidence from Pennsylvania. Science Advances, 3(12), e1603021.

    Article  Google Scholar 

  • Curtis, K. J., Fussell, E., & DeWaard, J. (2015). Recovery migration after Hurricanes Katrina and Rita: Spatial concentration and intensification in the migration system. Demography, 52(4), 1269–1293.

    Article  Google Scholar 

  • Davenport, F., Grace, K., Funk, C., & Shukla, S. (2017). Child health outcomes in sub-Saharan Africa: A comparison of changes in climate and socio-economic factors. Global Environmental Change, 46, 72–87.

    Article  Google Scholar 

  • Davis, J. (2017). Fertility after natural disaster: Hurricane Mitch in Nicaragua. Population and Environment, 38(4), 448–464.

    Article  Google Scholar 

  • Davis, J., Gray, C., & Bilsborrow, R. (2015). Delayed fertility transition among indigenous women: A case study in the Ecuadoran Amazon. International Perspectives on Sexual and Reproductive Health, 41(1), 1–10.

    Article  Google Scholar 

  • Dercon, S., Hoddinott, J., & Woldehanna, T. (2005). Shocks and consumption in 15 Ethiopian villages, 1999–2004. Journal of African Economies, 14(4), 559.

    Article  Google Scholar 

  • Deryugina, T., Kawano, L., & Levitt, S. (2018). The economic impact of Hurricane Katrina on its victims: Evidence from individual tax returns. American Economic Journal: Applied Economics, 10(2), 202–233.

    Google Scholar 

  • De Sherbinin, A., VanWey, L. K., McSweeney, K., Aggarwal, R., Barbieri, A., Henry, S., … Walker, R. (2008). Rural household demographics, livelihoods and the environment. Global Environmental Change, 18(1), 38–53.

    Article  Google Scholar 

  • Deschênes, O., & Greenstone, M. (2011). Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US. American Economic Journal: Applied Economics, 3(4), 152–185.

    Google Scholar 

  • DHS Program. (2019). Available at: https://www.dhsprogram.com/

  • Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., … Schwartz, J. D. (2017). Air pollution and mortality in the Medicare population. New England Journal of Medicine, 376(26), 2513–2522.

    Article  Google Scholar 

  • Eissler, S., Thiede, B. C., & Strube, J. (2019). Climatic variability and changing reproductive goals in Sub-Saharan Africa. Global Environmental Change, 57, 101912.

    Article  Google Scholar 

  • Elkies, N., Fink, G., & Bärnighausen, T. (2015). “Scrambling” geo-referenced data to protect privacy induces bias in distance estimation. Population and Environment, 37(1), 83–98.

    Article  Google Scholar 

  • Entwisle, B., Walsh, S. J., Rindfuss, R. R., & Chamratrithirong, A. (1998). Land-use/land-cover and population dynamics, Nang Rong, Thailand. People and pixels: Linking remote sensing and social science, 121–144.

    Google Scholar 

  • Elliott, J. R., & Howell, J. (2017). Beyond disasters: A longitudinal analysis of natural hazards’ unequal impacts on residential instability. Social Forces, 95(3), 1181–1207.

    Google Scholar 

  • Entwisle, B., Williams, N. E., Verdery, A. M., Rindfuss, R. R., Walsh, S. J., Malanson, G. P., … Heumann, B. W. (2016). Climate shocks and migration: An agent-based modeling approach. Population and Environment, 38(1), 47–71.

    Article  Google Scholar 

  • Frankenberg, E., Friedman, J., Gillespie, T., Ingwersen, N., Pynoos, R., Rifai, I. U., … Thomas, D. (2008). Mental health in Sumatra after the tsunami. American Journal of Public Health, 98(9), 1671–1677.

    Article  Google Scholar 

  • Fussell, E., Curtis, K. J., & DeWaard, J. (2014a). Recovery migration to the City of New Orleans after Hurricane Katrina: A migration systems approach. Population and Environment, 35(3), 305–322.

    Article  Google Scholar 

  • Fussell, E., Hunter, L. M., & Gray, C. L. (2014b). Measuring the environmental dimensions of human migration: The demographer’s toolkit. Global Environmental Change, 28, 182–191.

    Article  Google Scholar 

  • Fussell, E., Sastry, N., & VanLandingham, M. (2010). Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina. Population and Environment, 31(1–3), 20–42.

    Article  Google Scholar 

  • Galway, L. P., Acharya, Y., & Jones, A. D. (2018). Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries. Health & Place, 51, 78–88.

    Article  Google Scholar 

  • Grace, K., Davenport, F., Funk, C., & Lerner, A. M. (2012). Child malnutrition and climate in Sub-Saharan Africa: An analysis of recent trends in Kenya. Applied Geography, 35(1–2), 405–413.

    Article  Google Scholar 

  • Grace, K., Davenport, F., Hanson, H., Funk, C., & Shukla, S. (2015). Linking climate change and health outcomes: Examining the relationship between temperature, precipitation and birth weight in Africa. Global Environmental Change, 35, 125–137.

    Article  Google Scholar 

  • Grace, K., Nagle, N. N., Burgert-Brucker, C. R., Rutzick, S., Van Riper, D. C., Dontamsetti, T., & Croft, T. (2019). Integrating environmental context into DHS analysis while protecting participant confidentiality: A new remote sensing method. Population and Development Review, 45(1), 197–218.

    Article  Google Scholar 

  • Graff Zivin, J., & Neidell, M. (2014). Temperature and the allocation of time: Implications for climate change. Journal of Labor Economics, 32(1), 1–26.

    Article  Google Scholar 

  • Graif, C. (2016). (Un) natural disaster: Vulnerability, long-distance displacement, and the extended geography of neighborhood distress and attainment after Katrina. Population and Environment, 37(3), 288–318.

    Article  Google Scholar 

  • Gray, C., & Mueller, V. (2012). Drought and population mobility in rural Ethiopia. World Development, 40(1), 134–145.

    Article  Google Scholar 

  • Gray, C., Frankenberg, E., Gillespie, T., Sumantri, C., & Thomas, D. (2014). Studying displacement after a disaster using large-scale survey methods: Sumatra after the 2004 tsunami. Annals of the Association of American Geographers, 104(3), 594–612.

    Article  Google Scholar 

  • Gray, C., & Wise, E. (2016). Country-specific effects of climate variability on human migration. Climatic Change, 135(3–4), 555–568.

    Article  Google Scholar 

  • Groen, J. A., & Polivka, A. E. (2010). Going home after Hurricane Katrina: Determinants of return migration and changes in affected areas. Demography, 47(4), 821–844.

    Article  Google Scholar 

  • Hauer, M. E. (2017). Migration induced by sea-level rise could reshape the US population landscape. Nature Climate Change, 7(5), 321–325.

    Article  Google Scholar 

  • Headey, D., & Barrett, C. B. (2015). Opinion: Measuring development resilience in the world’s poorest countries. Proceedings of the National Academy of Sciences, 112(37), 11423–11425.

    Article  Google Scholar 

  • Henry, S. J., & Dos Santos, S. (2013). Rainfall variations and child mortality in the Sahel: Results from a comparative event history analysis in Burkina Faso and Mali. Population and Environment, 34(4), 431–459.

    Article  Google Scholar 

  • Henry, S., Boyle, P., & Lambin, E. F. (2003). Modelling inter-provincial migration in Burkina Faso, West Africa: The role of socio-demographic and environmental factors. Applied Geography, 23(2–3), 115–136.

    Article  Google Scholar 

  • Hill, E. L. (2018). Shale gas development and infant health: Evidence from Pennsylvania. Journal of Health Economics, 61, 134–150.

    Article  Google Scholar 

  • Hirschman, C., & Guest, P. (1990). Multilevel models of fertility determination in four Southeast Asian countries: 1970 and 1980. Demography, 27(3), 369–396.

    Article  Google Scholar 

  • Hoddinott, J., & Kinsey, B. (2001). Child growth in the time of drought. Oxford Bulletin of Economics and Statistics, 63(4), 409–436.

    Article  Google Scholar 

  • Hsiang, S. (2016). Climate econometrics. Annual Review of Resource Economics, 8, 43–75.

    Article  Google Scholar 

  • Hugo, G. J. (1982). Circular migration in Indonesia. Population and Development Review, 59–83.

    Google Scholar 

  • Hugo, G. (1996). Environmental concerns and international migration. International Migration Review, 30(1), 105–131.

    Article  Google Scholar 

  • Hunter, L. M., Twine, W., & Johnson, A. (2011). Adult mortality and natural resource use in rural South Africa: Evidence from the Agincourt health and demographic surveillance site. Society and Natural Resources, 24(3), 256–275.

    Article  Google Scholar 

  • Hunter, L. M., Nawrotzki, R., Leyk, S., Maclaurin, G. J., Twine, W., Collinson, M., & Erasmus, B. (2014). Rural outmigration, natural capital, and livelihoods in South Africa. Population, Space and Place, 20(5), 402–420.

    Article  Google Scholar 

  • Hunter, L. M., Luna, J. K., & Norton, R. M. (2015). Environmental dimensions of migration. Annual Review of Sociology, 41, 377–397.

    Article  Google Scholar 

  • Hunter, L. M., Twine, W., & Talbot, C. (2019). Working toward effective anonymization for surveillance data: innovation at South Africa’s Agincourt health and demographic surveillance site. Paper presented at the 2019 annual meeting of the Population Association of America, Austin, TX.

    Google Scholar 

  • Ickowitz, A., Powell, B., Salim, M. A., & Sunderland, T. C. (2014). Dietary quality and tree cover in Africa. Global Environmental Change, 24, 287–294.

    Article  Google Scholar 

  • Islam, M. S., Sharker, M. A. Y., Rheman, S., Hossain, S., Mahmud, Z. H., Islam, M. S., … Rector, I. (2009). Effects of local climate variability on transmission dynamics of cholera in Matlab, Bangladesh. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103(11), 1165–1170.

    Article  Google Scholar 

  • Jacoby, H. G., Rabassa, M., & Skoufias, E. (2014). Distributional implications of climate change in rural India: A general equilibrium approach. American Journal of Agricultural Economics, 97(4), 1135–1156.

    Article  Google Scholar 

  • Jennings, J. A., & Gray, C. L. (2017). Climate and marriage in the Netherlands, 1871–1937. Population and Environment, 38(3), 242–260.

    Article  Google Scholar 

  • Kessler, R. C., Galea, S., Jones, R. T., & Parker, H. A. (2006). Mental illness and suicidality after Hurricane Katrina. Bulletin of the World Health Organization, 84, 930–939.

    Article  Google Scholar 

  • Kessler, R. C., Galea, S., Gruber, M. J., Sampson, N. A., Ursano, R. J., & Wessely, S. (2008). Trends in mental illness and suicidality after Hurricane Katrina. Molecular Psychiatry, 13(4), 374.

    Article  Google Scholar 

  • Kumar, S., Molitor, R., & Vollmer, S. (2016). Drought and early child health in rural India. Population and Development Review, 53–68.

    Google Scholar 

  • Larsen, A. F., Headey, D., & Masters, W. A. (2019). Misreporting month of birth: Diagnosis and implications for research on nutrition and early childhood in developing countries. Demography, 56(2), 707–728.

    Article  Google Scholar 

  • Leone, T. (2014). Measuring differential maternal mortality using census data in developing countries. Population, Space and Place, 20(7), 581–591.

    Article  Google Scholar 

  • Leyk, S., Maclaurin, G. J., Hunter, L. M., Nawrotzki, R., Twine, W., Collinson, M., & Erasmus, B. (2012). Spatially and temporally varying associations between temporary outmigration and natural resource availability in resource-dependent rural communities in South Africa: A modeling framework. Applied Geography, 34, 559–568.

    Article  Google Scholar 

  • Loebach, P. (2016). Household migration as a livelihood adaptation in response to a natural disaster: Nicaragua and Hurricane Mitch. Population and Environment, 38(2), 185–206.

    Article  Google Scholar 

  • López-Carr, D. (2012). Agro-ecological drivers of rural out-migration to the Maya Biosphere Reserve, Guatemala. Environmental Research Letters, 7(4), 045603.

    Article  Google Scholar 

  • Lu, X., Wrathall, D. J., Sundsøy, P. R., Nadiruzzaman, M., Wetter, E., Iqbal, A., … Bengtsson, L. (2016). Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Global Environmental Change, 38, 1–7.

    Article  Google Scholar 

  • Maccini, S., & Yang, D. (2009). Under the weather: Health, schooling, and economic consequences of early-life rainfall. American Economic Review, 99(3), 1006–1026.

    Article  Google Scholar 

  • Mason, J. B., Bailes, A., Mason, K. E., Yambi, O., Jonsson, U., Hudspeth, C., … Martel, P. (2005). AIDS, drought, and child malnutrition in southern Africa. Public Health Nutrition, 8(6), 551–563.

    Article  Google Scholar 

  • Massey, D. S., Axinn, W. G., & Ghimire, D. J. (2010). Environmental change and out-migration: Evidence from Nepal. Population and Environment, 32(2–3), 109–136.

    Article  Google Scholar 

  • Mastrorillo, M., Licker, R., Bohra-Mishra, P., Fagiolo, G., Estes, L. D., & Oppenheimer, M. (2016). The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 39, 155–169.

    Article  Google Scholar 

  • Minnesota Population Center. (2019). Integrated public use microdata series, International: Version 7.2 [dataset]. IPUMS.

    Google Scholar 

  • Morgan, S. L., & Winship, C. (2015). Counterfactuals and causal inference. Cambridge University Press.

    Google Scholar 

  • Mueller, V., & Gray, C. (2018). Heat and adult health in China. Population and Environment, 40(1), 1–26.

    Article  Google Scholar 

  • Mueller, V., Gray, C., & Kosec, K. (2014). Heat stress increases long-term human migration in rural Pakistan. Nature Climate Change, 4(3), 182.

    Article  Google Scholar 

  • Mueller, V., Sheriff, G., Dou, X., & Gray, C. (2020). Temporary migration and climate variation in eastern Africa. World Development, 126, 104704.

    Article  Google Scholar 

  • Nandi, A., Mazumdar, S., & Behrman, J. R. (2018). The effect of natural disaster on fertility, birth spacing, and child sex ratio: Evidence from a major earthquake in India. Journal of Population Economics, 31(1), 267–293.

    Article  Google Scholar 

  • Nawrotzki, R. J., & Bakhtsiyarava, M. (2017). International climate migration: Evidence for the climate inhibitor mechanism and the agricultural pathway. Population, Space and Place, 23(4), e2033.

    Article  Google Scholar 

  • Nawrotzki, R. J., & DeWaard, J. (2016). Climate shocks and the timing of migration from Mexico. Population and Environment, 38(1), 72–100.

    Article  Google Scholar 

  • Nawrotzki, R. J., Riosmena, F., & Hunter, L. M. (2013). Do rainfall deficits predict US-bound migration from rural Mexico? Evidence from the Mexican census. Population Research and Policy Review, 32(1), 129–158.

    Article  Google Scholar 

  • Nawrotzki, R. J., Hunter, L. M., Runfola, D. M., & Riosmena, F. (2015). Climate change as a migration driver from rural and urban Mexico. Environmental Research Letters, 10(11), 114023.

    Article  Google Scholar 

  • Nawrotzki, R. J., Schlak, A. M., & Kugler, T. A. (2016). Climate, migration, and the local food security context: Introducing Terra Populus. Population and Environment, 38(2), 164–184.

    Article  Google Scholar 

  • Nobles, J., Frankenberg, E., & Thomas, D. (2015). The effects of mortality on fertility: Population dynamics after a natural disaster. Demography, 52(1), 15–38.

    Article  Google Scholar 

  • Ocello, C., Petrucci, A., Testa, M. R., & Vignoli, D. (2015). Environmental aspects of internal migration in Tanzania. Population and Environment, 37(1), 99–108.

    Article  Google Scholar 

  • Pais, J., Crowder, K., & Downey, L. (2013). Unequal trajectories: Racial and class differences in residential exposure to industrial hazard. Social Forces, 92(3), 1189–1215.

    Article  Google Scholar 

  • Perz, S. G., Walker, R. T., & Caldas, M. M. (2006). Beyond population and environment: Household demographic life cycles and land use allocation among small farms in the Amazon. Human Ecology, 34(6), 829–849.

    Article  Google Scholar 

  • Piguet, E. (2010). Linking climate change, environmental degradation, and migration: A methodological overview. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 517–524.

    Google Scholar 

  • Randell, H., & Gray, C. (2016). Climate variability and educational attainment: Evidence from rural Ethiopia. Global Environmental Change, 41, 111–123.

    Article  Google Scholar 

  • Randell, H., & Gray, C. (2019). Climate change and educational attainment in the global tropics. Proceedings of the National Academy of Sciences, 116(18), 8840–8845.

    Article  Google Scholar 

  • Randell, H., Gray, C., & Grace, K. (2020). Stunted from the start: Early life weather conditions and child undernutrition in Ethiopia. Social Science & Medicine, 261, 113234.

    Article  Google Scholar 

  • Ruggles, S. (2014). Big microdata for population research. Demography, 51(1), 287–297.

    Article  Google Scholar 

  • Sastry, N. (2009). Tracing the effects of Hurricane Katrina on the population of New Orleans: The displaced New Orleans residents pilot study. Sociological Methods & Research, 38(1), 171–196.

    Article  Google Scholar 

  • Sedova, B., & Kalkuhl, M. (2020). Who are the climate migrants and where do they go? Evidence from rural India. World Development, 129, 104848.

    Article  Google Scholar 

  • Sellers, S., & Gray, C. (2019). Climate shocks constrain human fertility in Indonesia. World Development, 117, 357–369.

    Article  Google Scholar 

  • Shi, L., Kloog, I., Zanobetti, A., Liu, P., & Schwartz, J. D. (2015). Impacts of temperature and its variability on mortality in New England. Nature Climate Change, 5(11), 988.

    Article  Google Scholar 

  • Shively, G. E. (2017). Infrastructure mitigates the sensitivity of child growth to local agriculture and rainfall in Nepal and Uganda. Proceedings of the National Academy of Sciences, 114(5), 903–908.

    Article  Google Scholar 

  • Thiede, B. C., & Brown, D. L. (2013). Hurricane Katrina: Who stayed and why? Population Research and Policy Review, 32(6), 803–824.

    Article  Google Scholar 

  • Thiede, B. C., & Gray, C. L. (2017). Heterogeneous climate effects on human migration in Indonesia. Population and Environment, 39(2), 147–172.

    Article  Google Scholar 

  • Thiede, B. C., & Gray, C. (2020). Climate exposures and child undernutrition: Evidence from Indonesia. Social Science & Medicine, 265, 113298.

    Article  Google Scholar 

  • Thiede, B., Gray, C., & Mueller, V. (2016). Climate variability and inter-provincial migration in South America, 1970–2011. Global Environmental Change, 41, 228–240.

    Article  Google Scholar 

  • Tiwari, S., Jacoby, H., & Skoufias, E. (2017). Monsoon babies: Rainfall shocks and child nutrition in Nepal. Economic Development and Cultural Change, 65(2), 167–188.

    Article  Google Scholar 

  • Tollman, S. M., Herbst, K., Garenne, M., Gear, J. S., & Kahn, K. (1999). The Agincourt demographic and health study-site description, baseline findings and implications. South African Medical Journal, 89(8).

    Google Scholar 

  • UNFPA. (2019). UNFPA strategy for the 2020 round of population & housing censuses (2015–2024): Because everyone counts. United Nations.

    Google Scholar 

  • Waters, M. C. (2016). Life after Hurricane Katrina: The resilience in survivors of Katrina (RISK) project. Sociological Forum, 31(S1), 750–769.

    Article  Google Scholar 

  • Watmough, G. R., Atkinson, P. M., Saikia, A., & Hutton, C. W. (2016). Understanding the evidence base for poverty–environment relationships using remotely sensed satellite data: An example from Assam, India. World Development, 78, 188–203.

    Article  Google Scholar 

  • Williams, N. E., & Gray, C. (2020). Spatial and temporal dimensions of weather shocks and migration in Nepal. Population and Environment, 41(3), 286–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Thiede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiede, B.C. (2022). Household-Scale Data and Analytical Approaches. In: Hunter, L.M., Gray, C., Véron, J. (eds) International Handbook of Population and Environment. International Handbooks of Population, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-76433-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76433-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76432-6

  • Online ISBN: 978-3-030-76433-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics