Skip to main content

Internet of Things for Monitoring and Detection of Agricultural Production

  • Chapter
  • First Online:
Intelligent Systems in Big Data, Semantic Web and Machine Learning

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1344))

Abstract

The creation of information based advancements, otherwise called savvy culture, recognizes and bolsters the decrease of money related, regular and cultural issues. As the total populace develops exponentially, it is fundamental to audit current cultivating practices to satisfy the needs of nourishment security. Insightful sensor frameworks give more data on water needs and harvests. This data can be utilized to computerize the water supply framework and get ready ranchers to advance their water system arrange. The data procured in the initial step is moved to the cloud. Unclassified Exceptional Readiness for Distributed Power Generation, which is a significant data measure that the producer of a cell phone application can utilize. This paper presents and assesses the idea of remote detecting gadget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gondechawar, N., Kawitkar, R.S.: IOT abased smart agriculture. Int. J. Adv. Res. Comput. Commun. Eng. 5, 838–842 (2016)

    Google Scholar 

  2. Yadav, P., Swanson, C., Penning, T., Wallace, J.: Study of moisture sensors’ response to drying cycles of soil. In: Conference: Irrigation Show Technical Program, At Las Vegas, NV (2019)

    Google Scholar 

  3. Na, A., Issac, W., Vashney, S., Khan, E.: An IOT based system for remote monitoring of soil characteristics. In: International Conference on Information Technology (InCITe)-The Next Generation IT Summit (2016)

    Google Scholar 

  4. Masrie, M., Rosman, M.S.A., Sam, R., Janin, Z.: Detection of nitrogen, phosphorous and potassium (NPK) nutrients of soil using optical fiber Transducer. In: 4th IEEE Conference on Smart Instrumentation, Measurement of Applications (ICSIMA) (2017)

    Google Scholar 

  5. Regalado, R.G., Dela Cruz, J.C.: Soil PH and nutrient (Nitrogen, phosphorous and potassium) analyzer using colorimetry (2016)

    Google Scholar 

  6. Ananthi, N.: IOT based smart soil monitoring system for agricultural production. In: IEEE International Conference on Technological Innovation in ICT for Agricultural and Rural Development (2017)

    Google Scholar 

  7. Bhardwaj, S., Goel, S., Sangam, V., Bhasker, Y.: Automatic irrigation system with temperature monitoring. Int. Res. J. Eng. Technol. (IRJET)

    Google Scholar 

  8. Gutiérrez, J., Villa-Medina, J.F., Nieto-Garibay, A., Porta-Gándara, M.Á.: Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans. Instrum. Meas. 63(1), 166–176 (2014)

    Article  Google Scholar 

  9. Gaikwad, S.V., Galande, S.G.: Measurement of NPK, temperature, moisture, humidity using WSN. Int. J. Eng. Res. Appl. 5, 84–89 (2015)

    Google Scholar 

  10. Mhaiskar, S., Patil, C., Wadhai, P., Patil, A., Deshmukh, V.: A survey on predicting suitable crops for cultivation using IoT. Int. J. Innov. Res. Comput. Commun. Eng. 5(1), 318–323 (2017)

    Google Scholar 

  11. Adeyemi, O., Grove, I., Peets, S., Domun, Y., Norton, T.: Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors 18, 3408 (2018)

    Article  Google Scholar 

  12. Ashish. InfluxDB To Grafana: Visualizing Time Series Data in Real Time, 06 March 2017. https://www.codementor.io/ashish1dev/influxdb-to-grafana-visualizing-time-series-data-in-real-time-5hxhaq0uj

  13. Zhang, J., Hu, S., Long, Z., Kou, Q.: The wireless data transmission system based on GPRS and its discussion for application. J. Electron. Meas. Instrum. 23, S1 (2009)

    Google Scholar 

  14. Wang, N., Zhang, N., Wang, M.: Wireless sensors in agriculture and food industry—recent development and future perspective. Comput. Electron. Agric. 50, 1–14 (2006)

    Article  Google Scholar 

  15. Braginsky, D., Estrin, D.: Rumor routing algorithm for sensor networks. In: Proceedings of the First ACM International Workshop on Wireless Sensor Networks & Applications, Atlanta, GA, USA, 28 September 2002, pp. 22–31 (2002)

    Google Scholar 

  16. Luo, J., Eugster, P.T., Hubaux, J.P.: Route driven gossip: probabilistic reliable multicast in ad hoc networks. In: Proceedings of the Joint Conference of the CiteSeer IEEE Computer and Communications, San Francisco, CA, USA, 30 March–3 April 2003, vol. 3, pp. 2229–2239 (2003)

    Google Scholar 

  17. Tian, B., Zhao, X.L., Yao, Q.M., Zha, L.: Design and implementation of a wireless video sensor network. In: Proceedings of the 2012 9th IEEE International Conference on Networking, Sensing and Control (ICNSC), Beijing, China, 11–14 April 2012, pp. 411–416 (2012)

    Google Scholar 

  18. Andrea, G., Lucchi, M., Tavelli, E., Barla, M., Gigli, G., Casagli, N., Chiani, M., Dardari, D.: A robust wireless sensor network for landslide risk analysis: system design, deployment, and field testing. IEEE Sens. J. 16(16), 6374–6386 (2016)

    Article  Google Scholar 

  19. Lee, H.C., Ke, K.H., Fang, Y.M., Lee, B.J., Chan, T.C.: Open-source wireless sensor system for long-term monitoring of slope movement. IEEE Trans. Instrum. Meas. 66(4), 767–776 (2017)

    Article  Google Scholar 

  20. Wu, J., Kong, Q., Li, W., Song, G.: Interlayer slide detection using piezoceramic smart aggregates based on active sensing approach. IEEE Sens. J. 17(19), 6160–6166 (2017)

    Article  Google Scholar 

  21. Ramesh, M.V., Kumar, S., Venkat Rangan, P.: Wireless sensor network for landslide detection. In: ICWN, pp. 89–95 (2009)

    Google Scholar 

  22. Fei, Y.J., Xu, Z.J., Feng, L.: The research of internet of things in agricultural production and management. In: Proceedings of the Fifteenth Session of the Annual Meeting of the Association of China, the Tenth Venue: Conference on Information Technology and Agricultural Modernization, Guiyang, China, 25–27 May 2013. (in Chinese)

    Google Scholar 

  23. Li, D.L.: Internet of things and wisdom of agriculture. Agric. Eng. 2, S126 (2012)

    Google Scholar 

  24. Nandha Kumar, G., Nishanth, G., Praveen Kumar, E.S., Archana, B.: Arduino based automatic plant watering system with internet of things. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 6(3) (2017)

    Google Scholar 

  25. Kumar, M.S., Ritesh Chandra, T., Pradeep Kumar, D., Sabarimalai Manikandan, M.: Monitoring moisture of soil with low cost home made soil moisture sensor and Arduino Uno. In: Advanced Computing and Communication Systems, 10th October 2016. IEEE (2016)

    Google Scholar 

  26. Kamalaskar, H.N., Zope, P.H.: International Journal of Engineering Sciences & Technology (IJESRT) survey of smart irrigation research system. ISSN 2277-9655

    Google Scholar 

  27. Otazú, V.: Manual on Quality Seed Potato Production Using Aeroponics, vol. 44. International Potato Center (CIP), Lima, Peru (2010). https://cippotato.org.research/publication/manaul-on-quality-seed-potato-production-usingaeroponics

  28. Soil Hygrometer sensor (smartprototyping.comlSoil-HygrometerDetection-Module-Soil-Moisture-Sensor-For-Arduino.html

    Google Scholar 

  29. Wang, C., Zhang, A., Karimi, H.R.: Development of La3+ doped CeO2 thick film humidity sensors. Abstr. Appl. Anal. 2014, 6 (2014). Article ID 297632

    Google Scholar 

  30. Chen, Z., Lu, C.: Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)

    Article  Google Scholar 

  31. Zor, S.D., Cankurtaran, H.: Impedimetric humidity sensor based on nanohybrid composite of conducting poly (diphenylamine sulfonic acid). J. Sens. 2016, 9 (2016). Article ID 5479092

    Google Scholar 

  32. Asao, T.: Hydroponics - A Standard Methodology for Plant Biological Researches, 1st edn. Intech, Rijeka (2012)

    Book  Google Scholar 

  33. Borgognone, D., Colla, G., Rouphael, Y., Cardarelli, M., Rea, E., Schwarz, D.: Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Sci. Hortic. 149, 61–69 (2013)

    Article  Google Scholar 

  34. Patil, V.C., Al-Gaadi, K.A., Biradar, D.P., Rangaswamy, M.: Internet of things (Iot) and cloud computing for agriculture: an overview. In: Proceedings of Agro-Informatics and Precision Agriculture (AIPA 2012), India, pp. 292–296 (2012)

    Google Scholar 

  35. Assam Agricultural University, Jorhat, Agro-Climatic Planning for Agricultural Development in the State of Assam: Draft Outline for the Eighth Plan Period (1994)

    Google Scholar 

  36. Whitmore, A., Agarwal, A., Da Xu, L.: The Internet of Things-A survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2014)

    Article  Google Scholar 

  37. Pascual, V.J., Wang, Y.-M.: Impact of water management on rice varieties, yield, and water productivity under the system of rice intensification in Southern Taiwan. Water (2017)

    Google Scholar 

  38. Thakare, S., Bhagat, P.H.: Arduino-based smart irrigation using sensors and ESP8266 WiFi module. In: Second International Conference on Intelligent Computing and Control Systems (ICICCS 2018) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Mabrouki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mabrouki, J., Benbouzid, M., Dhiba, D., El Hajjaji, S. (2021). Internet of Things for Monitoring and Detection of Agricultural Production. In: Gherabi, N., Kacprzyk, J. (eds) Intelligent Systems in Big Data, Semantic Web and Machine Learning. Advances in Intelligent Systems and Computing, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-72588-4_19

Download citation

Publish with us

Policies and ethics