Skip to main content

Abstract

Internet of Things (IoT) based devices generated big data that comprises all data collected by sensors equipment, both structured semi-structured, and unstructured, that can be analyzed using certain algorithms and analytical techniques to handle and retrieve important possessions of such data. However, Information Security and Assurance have become increasingly important in an era in which relevant data is recognized as a key asset by many organizations. Numerous security issues related to this generated data calls for concern in terms of security and assurance relating to the information system. With the various threats and attacks to information, securing such records has now become imperative. Therefore, this paper proposes the use of cryptography-based technology to secure information on IoT-based big data generation. Triple Data Encryption Standard (3DES) algorithm will be used to secure the big data generated from IoT-based sensors and devices. The performance of the system indicated that the proposed method performed well in comparison to other state-of-the-art techniques, indicating possible uses as a veritable tool for effective privacy and security of information generated from IoT-based platform. The solution will help facilitate data circulation and it may be used as a safe framework for large-scale data processing to organize the information or data of a significant number of people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olivier, F., Carlos, G., & Florent, N. (2015). New security architecture for IoT network. Procedia Computer Science, 52, 1028–1033.

    Article  Google Scholar 

  2. Open Networking Foundation. [Online]. Available: https://www.opennetworking.org/.

  3. Jagadeeswari, V., Subramaniyaswamy, V., Logesh, R., & Vijayakumar, V. J. H. I. S. (2018). A study on the medical Internet of Things and Big Data in the personalized healthcare system. Health Information Science and Systems, 6(1), 14.

    Article  Google Scholar 

  4. Elhoseny, M., Shankar, K., Lakshmanaprabu, S. K., Maseleno, A., & Arunkumar, N. (2018). Hybrid optimization with cryptography encryption for medical image security in the Internet of Things. Neural Computing and Applications, 1–15.

    Google Scholar 

  5. Khan, S. R., Sikandar, M., Almogren, A., Din, I. U., Guerrieri, A., & Fortino, G. (2020). IoMT-based computational approach for detecting brain tumor. Future Generation Computer Systems, 109, 360–367.

    Google Scholar 

  6. Tahir, S., Bakhsh, S. T., Abulkhair, M., & Alassafi, M. O. (2019). An energy-efficient fog-to-cloud Internet of Medical Things architecture. International Journal of Distributed Sensor Networks, 15(5), 1550147719851977.

    Article  Google Scholar 

  7. Din, I. U., Almogren, A., Guizani, M., & Zuair, M. (2019). A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access, 7, 89967–89979.

    Article  Google Scholar 

  8. Islam, S. U., Khattak, H. A., Pierson, J. M., Din, I. U., Almogren, A., Guizani, M., & Zuair, M. (2019). Leveraging utilization as a performance metric for CDN enabled energy-efficient internet of things. Measurement, 147, 106814.

    Article  Google Scholar 

  9. Awan, K. A., Din, I. U., Almogren, A., Guizani, M., Altameem, A., & Jadoon, S. U. (2019). Robusttrust–a pro-privacy robust distributed trust management mechanism for the internet of things. IEEE Access, 7, 62095–62106.

    Article  Google Scholar 

  10. Din, I. U., Guizani, M., Kim, B. S., Hassan, S., & Khan, M. K. (2018). Trust management techniques for the Internet of Things: A survey. IEEE Access, 7, 29763–29787.

    Article  Google Scholar 

  11. Yin, M., Chen, X., Wang, Q., Wang, W., & Wang, Y. (2019). Dynamics on hybrid complex network: Botnet modeling and analysis of medical IoT. Security and Communication Networks, 2019.

    Google Scholar 

  12. Ali, S., Islam, N., Rauf, A., Din, I. U., Guizani, M., & Rodrigues, J. J. (2018). Privacy and security issues in online social networks. Future Internet, 10(12), 114.

    Article  Google Scholar 

  13. Khan, S. U., Islam, N., Jan, Z., Din, I. U., Khan, A., & Faheem, Y. (2019). An e-Health care services framework for the detection and classification of breast cancer in breast cytology images as an IoMT application. Future Generation Computer Systems, 98, 286–296.

    Article  Google Scholar 

  14. Li, X., Niu, J., Kumari, S., Wu, F., Sangaiah, A. K., & Choo, K. K. R. (2018). A three-factor anonymous authentication scheme for wireless sensor networks in the internet of things environments. Journal of Network and Computer Applications, 103, 194–204.

    Article  Google Scholar 

  15. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  16. Roopaei, M., Rad, P., & Choo, K. K. R. (2017). Cloud of Things in smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE Cloud Computing, 4(1), 10–15.

    Article  Google Scholar 

  17. Kour, V. P., & Arora, S. (2020). Recent developments of the Internet of Things in Agriculture: A survey. IEEE Access, 8, 129924–129957.

    Article  Google Scholar 

  18. Walker-Roberts, S., Hammoudeh, M., & Dehghantanha, A. (2018). A systematic review of the availability and efficacy of countermeasures to internal threats in healthcare critical infrastructure. IEEE Access, 6, 25167–25177.

    Article  Google Scholar 

  19. Thilakarathne, N. N., Kagita, M. K., & Gadekallu, D. T. R. (2020). The role of the Internet of Things in Health Care: A systematic and comprehensive study. International Journal of Engineering and Management Research, 10(4), 145–159.

    Article  Google Scholar 

  20. Hammoudeh, M., Epiphaniou, G., Belguith, S., Unal, D., Adebisi, B., Baker, T., & Watters, P. (2020). A service-oriented approach for sensing in the Internet of Things: Intelligent transportation systems and privacy use cases. IEEE Sensors Journal, 1–14.

    Google Scholar 

  21. Mishra, L., & Varma, S. (2020, March). Internet of Things for military applications. In 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 118–123). IEEE.

    Google Scholar 

  22. Lang, W., Shan, D., Zhang, H., Wei, S., & Yu, L. (2020, June). IoBTChain: An integration framework of internet of Battlefield Things (IoBT) and Blockchain. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 607–611). IEEE.

    Google Scholar 

  23. Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. Future Generation Computer Systems, 544–546.

    Google Scholar 

  24. Behera, R. K., Jena, M., Rath, S. K., & Misra, S. (2021). Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data. Information Processing & Management, 58(1), 102435.

    Article  Google Scholar 

  25. Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R. (2019). Big data and internet of things security and forensics: Challenges and opportunities. In Handbook of Big Data and IoT Security (pp. 1–4). Springer, Cham.

    Google Scholar 

  26. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on the internet of things: Architecture, enabling technologies, security, and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

    Article  Google Scholar 

  27. Ayeni, F., Misra, S., & Omoregbe, N. (2015, June). Using big data technology to contain current and future occurrence of Ebola viral disease and other epidemic diseases in West Africa. In International Conference in Swarm Intelligence (pp. 107–114). Springer, Cham.

    Google Scholar 

  28. Shin, B., & Lowry, P. B. (2020). A review and theoretical explanation of the ‘Cyberthreat-Intelligence (CTI) capability’ that needs to be fostered in information security practitioners and how this can be accomplished. Computers & Security, 92, 101761.

    Article  Google Scholar 

  29. Yang, Y., Zheng, X., Guo, W., Liu, X., & Chang, V. (2018). Privacy-preserving fusion of IoT and big data for e-health. Future Generation Computer Systems, 86, 1437–1455.

    Article  Google Scholar 

  30. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.

    Article  Google Scholar 

  31. Narayanan, U., Paul, V., & Joseph, S. (2020). A novel system architecture for secure authentication and data sharing in the cloud-enabled Big Data Environment. Journal of King Saud University-Computer and Information Sciences.

    Google Scholar 

  32. Moon, Y., Ha, S., Park, M., Lee, D., & Jeong, J. (2018, June). A methodology of NB-IoT mobility optimization. In 2018 Global Internet of Things Summit (GIoTS) (pp. 1–5). IEEE.

    Google Scholar 

  33. Adeniyi, E. A., Ogundokun, R. O., & Awotunde, J. B. (2021). IoMT-Based Wearable Body Sensors Network Healthcare Monitoring System. Studies in Computational Intelligence, 933, 103–121.

    Google Scholar 

  34. Odun-Ayo, I., Misra, S., Omoregbe, N. A., Onibere, E., Bulama, Y., & Damasevicius, R. (2017, March). Cloud-based security driven human resource management system. In ICADIWT (pp. 96–106).

    Google Scholar 

  35. Campbell, J. (2020). The origins and development of the right to privacy. In Comparative privacy and defamation. Edward Elgar Publishing.

    Google Scholar 

  36. Weber, R. H. (2010). Internet of Things-New security and privacy challenges. Computer Law & Security Review, 26(1), 23–30.

    Article  Google Scholar 

  37. Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15–16), 4719–4742.

    Article  Google Scholar 

  38. Awotunde, J. B., Adeniyi, E. A., Ogundokun, R. O., & Ayo, F. E. Application of Big Data with Fintech in Financial Services. Fintech with Artificial Intelligence, Big Data, and Blockchain, 107–139.

    Google Scholar 

  39. Fabian, B., & Gunther, O. (2007, June). Distributed ONS and its privacy impact. In 2007 IEEE International Conference on Communications (pp. 1223–1228). IEEE.

    Google Scholar 

  40. Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17–39.

    Article  Google Scholar 

  41. Malik, M., Dutta, M., & Granjal, J. (2019). A survey of key bootstrapping protocols based on public-key cryptography in the Internet of Things. IEEE Access, 7, 27443–27464.

    Article  Google Scholar 

  42. Jiang, W., Li, H., Xu, G., Wen, M., Dong, G., & Lin, X. (2019). PTAS: Privacy-preserving thin-client authentication scheme in blockchain-based PKI. Future Generation Computer Systems, 96, 185–195.

    Article  Google Scholar 

  43. Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning-based solutions for the security of the Internet of Things (IoT): A survey. Journal of Network and Computer Applications, 161, 102630.

    Article  Google Scholar 

  44. De Rango, F., Potrino, G., Tropea, M., & Fazio, P. (2020). Energy-aware dynamic Internet of a Things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive and Mobile Computing, 61, 101105.

    Article  Google Scholar 

  45. Diaz-Sanchez, D., Sherratt, R. S., Almenarez, F., Arias, P., & Marin, A. (2016). Secure store and forward proxy for dynamic IoT applications over M2M networks. IEEE Transactions on Consumer Electronics, 62(4), 389–397.

    Article  Google Scholar 

  46. Abiodun, M. K., Awotunde, J. B., Ogundokun, R. O., Misra, S., Adeniyi, E. A., Arowolo, M. O., & Jaglan, V. (2021). Cloud and big data: A mutual benefit for organization development. Journal of Physics: Conference Series, 1767(1), 012020.

    Article  Google Scholar 

  47. Wu, F., Xu, L., Kumari, S., Li, X., Shen, J., Choo, K. K. R., & Das, A. K. (2017). An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment. Journal of Network and Computer Applications, 89, 72–85.

    Google Scholar 

  48. Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R., & Kotagiri, R. (2013). Authorized public auditing of dynamic big data storage on a cloud with efficient verifiable fine-grained updates. IEEE Transactions on Parallel and Distributed Systems, 25(9), 2234–2244.

    Article  Google Scholar 

  49. Baek, J., Vu, Q. H., Liu, J. K., Huang, X., & Xiang, Y. (2014). A secure cloud computing based framework for big data information management of the smart grid. IEEE Transactions on Cloud Computing, 3(2), 233–244.

    Article  Google Scholar 

  50. Dhawale, C. A., Misra, S., Jambhekar, N. D., & Thakur, S. U. (2016). Mobile computing security threats and solution. Int. J. Pharm. Technol, 8, 23075–23086.

    Google Scholar 

  51. Jambhekar, N. D., Misra, S., & Dhawale, C. A. (2016). Cloud computing security with collaborating encryption. Indian Journal of Science and Technology, 9(21), 1–7.

    Article  Google Scholar 

  52. Awotunde, J. B., Ayo, F. E., Ogundokun, R. O., Matiluko, O. E., & Adeniyi, E. A. (2020, July). Investigating the roles of effective communication among stakeholders in collaborative software development projects. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS (Vol. 12254, pp. 311–319).

    Google Scholar 

  53. Yang, Y., Zheng, X., Chang, V., & Tang, C. (2017). Semantic keyword searchable proxy re-encryption for postquantum secure cloud storage. Concurrency and Computation: Practice and Experience, 29(19), e4211.

    Article  Google Scholar 

  54. Azeez, N. A., Salaudeen, B. B., Misra, S., Damaševičius, R., & Maskeliūnas, R. (2020). Identifying phishing attacks in communication networks using URL consistency features. International Journal of Electronic Security and Digital Forensics, 12(2), 200–213.

    Article  Google Scholar 

  55. Yang, Y., Liu, X., Deng, R. H., & Weng, J. (2017). Flexible wildcard searchable encryption system. IEEE Transactions on Services Computing, 13(3), 464–477.

    Google Scholar 

  56. Osho, O., Musa, F. A., Misra, S., Uduimoh, A. A., Adewunmi, A., & Ahuja, R. (2019, October). AbsoluteSecure: A tri-layered data security system. In International Conference on Information and Software Technologies (pp. 243–255). Springer, Cham.

    Google Scholar 

  57. Bethencourt, J., Sahai, A., & Waters, B. (2007, May). Ciphertext-policy attribute-based encryption. In 2007 IEEE Symposium on Security and Privacy (SP’07) (pp. 321–334). IEEE.

    Google Scholar 

  58. Waters, B. (2011, March). Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In International Workshop on Public Key Cryptography (pp. 53–70). Springer, Berlin, Heidelberg.

    Google Scholar 

  59. Ayo, F. E., Folorunso, S. O., Abayomi-Alli, A. A., Adekunle, A. O., & Awotunde, J. B. (2020). Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Information Security Journal: A Global Perspective, 29(6), 267–283.

    Google Scholar 

  60. Yang, Y., Liu, X., Deng, R. H., & Li, Y. (2017). Lightweight sharable and traceable secure mobile health system. IEEE Transactions on Dependable and Secure Computing, 17(1), 78–91.

    Article  Google Scholar 

  61. Yang, Y., & Ma, M. (2015). Conjunctive keyword search with designated tester and timing enabled proxy re-encryption function for e-health clouds. IEEE Transactions on Information Forensics and Security, 11(4), 746–759.

    MathSciNet  Google Scholar 

  62. Yang, Y., Liu, X., & Deng, R. H. (2018). Lightweight break-glass access control system for healthcare Internet-of-Things. IEEE Transactions on Industrial Informatics, 14(8), 3610.

    Article  Google Scholar 

  63. Yang, K., Jia, X., & Ren, K. (2014). Secure and verifiable policy update outsourcing for big data access control in the cloud. IEEE Transactions on Parallel and Distributed Systems, 26(12), 3461–3470.

    Article  Google Scholar 

  64. Ying, Z., Li, H., Ma, J., Zhang, J., & Cui, J. (2016). Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating. Science China Information Sciences, 59(4), 042701.

    Article  Google Scholar 

  65. Li, H., Liu, D., Alharbi, K., Zhang, S., & Lin, X. (2015). Enabling fine-grained access control with efficient attribute revocation and policy updating in smart grid. TIIS, 9(4), 1404–1423.

    Google Scholar 

  66. Li, J., Lin, X., Zhang, Y., & Han, J. (2016). KSF-OABE: Outsourced attribute-based encryption with keyword search function for cloud storage. IEEE Transactions on Services Computing, 10(5), 715–725.

    Article  Google Scholar 

  67. Miao, Y., Ma, J., Liu, X., Li, X., Jiang, Q., & Zhang, J. (2017). Attribute-based keyword search over hierarchical data in cloud computing. IEEE Transactions on Services Computing, 9(1), 1–14.

    Google Scholar 

  68. Yeh, L. Y., Chiang, P. Y., Tsai, Y. L., & Huang, J. L. (2015). Cloud-based fine-grained health information access control framework for lightweight IoT devices with dynamic auditing and attribute revocation. IEEE Transactions on Cloud Computing, 6(2), 532–544.

    Article  Google Scholar 

  69. Abood, O. G., & Guirguis, S. K. (2018). A survey on cryptography algorithms. International Journal of Scientific and Research Publications, 8(7), 410–415.

    Article  Google Scholar 

  70. Riman, C., & Abi-Char, P. E. (2015). comparative analysis of block cipher-based encryption algorithms: a survey. Information Security and Computer Fraud, 3(1), 1–7.

    Google Scholar 

  71. Xiong, H., Zhao, Y., Peng, L., Zhang, H., & Yeh, K. H. (2019). Partially policy-hidden attribute-based broadcast encryption with a secure delegation in edge computing. Future Generation Computer Systems, 97, 453–461.

    Article  Google Scholar 

  72. Abdulraheem, M., Awotunde, J. B., Jimoh, R. G., & Oladipo, I. D. (2021). An efficient lightweight cryptographic algorithm for IoT security. Communications in Computer and Information Science, 1350, 444–456.

    Google Scholar 

  73. Koko, S. O. F. M., & Babiker, A. (2015). Comparison of various encryption algorithms and techniques for improving secured data communication. IOSR Journal of Computer Engineering (IOSR-JCE), 17(1), 62–69.

    Google Scholar 

  74. Arias, O., Wurm, J., Hoang, K., & Jin, Y. (2015). Privacy and security on the internet of things and wearable devices. IEEE Transactions on Multi-Scale Computing Systems, 1(2), 99–109.

    Article  Google Scholar 

  75. Zhang, L., Zhang, Y., Tang, S., & Luo, H. (2017). Privacy protection for e-health systems by means of dynamic authentication and three-factor key agreement. IEEE Transactions on Industrial Electronics, 65(3), 2795–2805.

    Article  Google Scholar 

  76. Ogundokun, R. O., Abikoye, O. C., Misra, S., Awotunde, J. B. (2020). modified least significant bit technique for securing medical images. Lecture Notes in Business Information Processing, 402, 553–565.

    Google Scholar 

  77. Wang, C., Cao, N., Ren, K., & Lou, W. (2011). Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Transactions on Parallel and Distributed Systems, 23(8), 1467–1479.

    Article  Google Scholar 

  78. Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2013). Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 25(1), 222–233.

    Article  Google Scholar 

  79. Li, H., Liu, D., Dai, Y., & Luan, T. H. (2015). Engineering searchable encryption of mobile cloud networks: When QoE meets QoP. IEEE Wireless Communications, 22(4), 74–80.

    Article  Google Scholar 

  80. Xu, J., Wei, L., Wu, W., Wang, A., Zhang, Y., & Zhou, F. (2020). Privacy-preserving data integrity verification by using lightweight streaming authenticated data structures for the healthcare cyber-physical system. Future Generation Computer Systems, 108, 1287–1296.

    Article  Google Scholar 

  81. Kaur, H., Kumar, N., & Batra, S. (2018). An efficient multi-party scheme for privacy-preserving collaborative filtering for the healthcare recommender system. Future Generation Computer Systems, 86, 297–307.

    Article  Google Scholar 

  82. Yang, Y., Zheng, X., Guo, W., Liu, X., & Chang, V. (2019). Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive access control system. Information Sciences, 479, 567–592.

    Article  Google Scholar 

  83. Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access, 5, 3302–3312.

    Article  Google Scholar 

  84. Ara, A., Al-Rodhaan, M., Tian, Y., & Al-Dhelaan, A. (2017). A secure privacy-preserving data aggregation scheme based on bilinear ElGamal cryptosystem for remote health monitoring systems. IEEE Access, 5, 12601–12617.

    Article  Google Scholar 

  85. Rahman, F., Bhuiyan, M. Z. A., & Ahamed, S. I. (2017). A privacy-preserving framework for RFID based healthcare systems. Future Generation Computer Systems, 72, 339–352.

    Article  Google Scholar 

  86. Abouelmehdi, K., Beni-Hessane, A., & Khaloufi, H. (2018). Big healthcare data: Preserving security and privacy. Journal of Big Data, 5(1), 1.

    Article  Google Scholar 

  87. Alsubaei, F., Abuhussein, A., & Shiva, S. (2017, October). Security and privacy on the internet of medical things: taxonomy and risk assessment. In 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops) (pp. 112–120). IEEE.

    Google Scholar 

  88. Mutlag, A. A., Ghani, M. K. A., Arunkumar, N. A., Mohammed, M. A., & Mohd, O. (2019). Enabling technologies for fog computing in healthcare IoT systems. Future Generation Computer Systems, 90, 62–78.

    Article  Google Scholar 

  89. Abikoye, O. C., Ojo, U. A., Awotunde, J. B., & Ogundokun, R. O. (2020). A safe and secured iris template using steganography and cryptography. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-08971-x.

    Article  Google Scholar 

  90. Rajesh, S., Paul, V., Menon, V. G., & Khosravi, M. R. (2019). A secure and efficient lightweight symmetric encryption scheme for the transfer of text files between embedded IoT devices. Symmetry, 11(2), 293.

    Article  Google Scholar 

  91. Wu, F., Wu, T., & Yuce, M. R. (2019). An internet-of-things (IoT) network system for connected safety and health monitoring applications. Sensors, 19(1), 21.

    Article  Google Scholar 

  92. Alassaf, N., Gutub, A., Parah, S. A., & Al Ghamdi, M. (2019). Enhancing the speed of SIMON: A light-weight-cryptographic algorithm for IoT applications. Multimedia Tools and Applications, 78(23), 32633–32657.

    Article  Google Scholar 

  93. Khari, M., Garg, A. K., Gandomi, A. H., Gupta, R., Patan, R., & Balusamy, B. (2019). Securing data in the Internet of Things (IoT) using cryptography and steganography techniques. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(1), 73–80.

    Article  Google Scholar 

  94. Shanthakumari, R., & Malliga, S. (2019). Dual-layer security of image steganography based on IDEA and LSBG algorithm in the cloud environment. Sādhanā, 44(5), 119.

    Article  MathSciNet  Google Scholar 

  95. Abd-El-Atty, B., Iliyasu, A. M., Alaskar, H., El-Latif, A., & Ahmed, A. (2020). A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based E-healthcare platforms. Sensors, 20(11), 3108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abiodun, M.K., Awotunde, J.B., Ogundokun, R.O., Adeniyi, E.A., Arowolo, M.O. (2021). Security and Information Assurance for IoT-Based Big Data. In: Misra, S., Kumar Tyagi, A. (eds) Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities. Studies in Computational Intelligence, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-72236-4_8

Download citation

Publish with us

Policies and ethics