Skip to main content

Quasi-circular Vegetation Patch Mapping with Multitemporal Kauth-Thomas Transformation of the mIHS Pansharpened GF-2 Images

  • Conference paper
  • First Online:
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2020)

Abstract

The quasi-circular vegetation patches (QVPs) are better objects for studying the ecosystem evolution, functioning, and maintenance in the Yellow River Delta, China. Remote sensing with linear change detection technique is an effective approach for mapping the vegetation dynamics. In this paper, the multitemporal Kauth-Thomas transformation (MKT) change detection technique with the decision tree classifier was used to map the QVPs based on the modified intensity-hue-saturation pansharpened April and August Gaofen-2 images. Results indicated that mapping the QVPs could be performed well using the approaches used in this paper. The precision, recall rate, and F-measure were 66.7%, 52.9%, and 59.0%, respectively. In the future, patch splitting techniques and more test areas should be tested for improving the detection accuracy of the QVPs. In addition, an assessment on the possibility of change in brightness and greenness between multitemporal images for mapping the dominant communities of the QVPs should be performed, which were important for the establishment, evolution, and disappearance of the QVPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agular, M.R., Sala, O.E.: Patch structure, dynamics and implication for the functioning of arid ecosystem. Tree 14(7), 273–277 (1999)

    Google Scholar 

  2. Lejeune, O., Tlidi, M., Lefever, R.: Vegetation spots and stripes: dissipative structures in arid landscapes. Int. J. Quantum Chem. 98, 261–271 (2004)

    Article  Google Scholar 

  3. Armas, C., Pugnaire, F.J., Sala, O.E.: Patch structure dynamics and mechanism of cyclical succession in a Patagonian steppe (Argentina). J. Arid Environ. 72, 1552–1561 (2008)

    Article  Google Scholar 

  4. Liu, Q.S., Liu, G.H., Huang, C., Li, H.: Soil physicochemical properties associated with quasi-circular vegetation patches in the Yellow River Delta, China. Geoderma 337, 202–214 (2019)

    Article  Google Scholar 

  5. Liu, Q.S., Dong, J.F., Liu, G.H., Huang, C., Xie, C.J.: Using the canny edge detector and mathematical morphology operators to detect vegetation patches. In: Zhang, T. (ed.) 3rd International Conference on Digital Image Processing (ICDIP 2011), Proceedings of SPIE, vol. 8009, p. 80091H (2011)

    Google Scholar 

  6. Liu, Q.S., Huang, C., Liu, G.H., Yu, B.: Comparison of CBERS-04, GF-1, and GF-2 satellite panchromatic images for mapping quasi-circular vegetation patches in the Yellow River Delta, China. Sensors 18, 2733 (2018)

    Article  Google Scholar 

  7. Liu, Q.S., Song, H.W., Liu, G.H., Huang, C., Li, H.: Evaluating the potential of multi-seasonal CBERS-04 imagery for mapping the quasi-circular vegetation patches in the Yellow River Delta using random forest. Remote Sens. 11, 1216 (2019)

    Article  Google Scholar 

  8. Trodd, N.M., Dougill, A.J.: Monitoring vegetation dynamics in semi-arid African rangelands: Use and limitations of Earth observation data to characterize vegetation structure. Appl. Geogr. 18, 315–330 (1998)

    Article  Google Scholar 

  9. Von Hardenberg, J., Kletter, A.Y., Yizhag, H., Nathan, J., Meron, E.: Periodic versus scale-free patterns in dryland vegetation. Proc. Roy. Soc. B (Biol. Sci.) 277, 1771–1776 (2010)

    Article  Google Scholar 

  10. Liu, Q.S., Liu, G.H., Huang, C., Xie, C.J.: Using SPOT 5 fusion-ready imagery to detect Chinese tamarisk (Slatcedar) with mathematical morphological method. Int. J. Digit. Earth 7, 217–228 (2014)

    Article  Google Scholar 

  11. Collins, J.B., Woodcock, C.E.: An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sens. Environ. 56, 66–77 (1996)

    Article  Google Scholar 

  12. Rogan, J., Franklin, J., Roberts, D.A.: A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 80, 143–156 (2002)

    Article  Google Scholar 

  13. Rogan, J., Miller, J., Stow, D., Franklin, J., Levien, L., Fischer, C.: Land-cover change monitoring with classification trees using Landsat TM and ancillary data. Photogram. Eng. Remote Sens. 69(7), 793–804 (2003)

    Article  Google Scholar 

  14. Lau, W.Y., Ge, L.L., Jia, X.: The possibility of using multitemporal Landsat images for mining monitoring: a preliminary study. In: 3rd International Symposium on Future Intelligent Earth Observation Satellites 2006. Science Press, Beijing, China (2007)

    Google Scholar 

  15. Villarreal, M.L., Norman, L.M., Webb, R.H., Turner, R.T.: Historical and contemporary geographic data reveal complex spatial and temporal responses of vegetation to climate and land stewardship. Land 2, 194–224 (2013)

    Article  Google Scholar 

  16. Turkes, M., Akgunduz, A.S.: Assessment of the desertification vulnerability of the Cappadocian district (Central Anatolia, Turkey) base on aridity and climate-process system. Int. J. Hum. Sci. 8(1), 1234–1268 (2011)

    Google Scholar 

  17. CRESDA Homepage. GF-2. http://www.cresda.com/EN/satellite/7157.shtml. Accessed 28 Nov 2019

  18. Kang, T., Zhang, X., Wang, H.: Assessment of the fused image of multispectral and panchromatic images of SPOT5 in the investigation of geological hazards. Sci. Chin. Ser. E Technol. Sci. 51, 144–153 (2008)

    Article  Google Scholar 

  19. Hasanlou, M., Saradjian, M.R.: Quality assessment of pan-sharpening methods in high-resolution satellite images using radiometric and geometric index. Arab. J. Geosci. 8, 45 (2016)

    Article  Google Scholar 

  20. Du, Y., Teillet, P.M., Cihlar, J.: Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 82, 123–134 (2002)

    Article  Google Scholar 

  21. Jackson, R.D.: Spectral indices in n-space. Remote Sens. Environ. 13, 409–421 (1983)

    Article  Google Scholar 

  22. Ivits, E., Lamb, A., Langar, F., Hemphill, S., Koch, B.: Orthogonal transformation of segmented SPOT5 images: seasonal and geographical dependence of the tasselled cap parameters. Photogram. Eng. Remote Sens. 74, 1351–1364 (2008)

    Article  Google Scholar 

  23. Liu, Q.S., Liu, G.H., Huang, C., Xie, C.J.: Comparison of tasselled cap transformation based on the selective bands of Landsat 8 OLI TOA reflectance images. Int. J. Remote Sens. 36, 417–441 (2015)

    Article  Google Scholar 

  24. Crist, E.P., Kauth, R.J.: The tasseled cap de-mystified. Photogram. Eng. Remote Sens. 52, 81–86 (1986)

    Google Scholar 

  25. Huang, C., Wylie, B., Yang, L., Horner, C., Zylstra, G.: Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 23(8), 1741–1748 (2002)

    Article  Google Scholar 

  26. Baig, M.H.A., Zhang, L.F., Shuai, T., Tong, Q.X.: Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5(5), 423–431 (2014)

    Article  Google Scholar 

  27. Yarbrough, L.D., Easson, G., Kuszmaul, J.S.: QuickBird 2 tasseled cap transformation coefficients: a comparison of derivation methods and developments. In: Pecora 16 Global Priorities in Land Remote Sensing. Sioux Falls, SD (2005)

    Google Scholar 

  28. Potsdam, A.F., Greifswald, P.S., Bozen, S.Z., Italien, T.T., Greifswald, K.S.: Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery. PFG 2011(3), 109–122 (2011)

    Article  Google Scholar 

  29. Tsai, Y., Stow, D., Chen, H., Lewison, R., An, L., Shi, L.: Mapping vegetation and land use types in Fanjingshan National Nature Reserve using Google Earth engine. Remote Sens. 10, 927 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This research was jointly financially supported by the National Natural Science Foundation of China (Project No. 41671422, 41661144030, 41561144012), the Strategic Priority Research Program of Chinese Academy of Sciences (Project No. XDA 20030302), the Innovation Project of LREIS (Project No. 088RA20CYA, 08R8A010YA), and the National Mountain Flood Disaster Investigation Project (Project No. SHZH-IWHR-57). Thanks to China Center for Resources Satellite Data and Application for providing the GF-2 data products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q. (2021). Quasi-circular Vegetation Patch Mapping with Multitemporal Kauth-Thomas Transformation of the mIHS Pansharpened GF-2 Images. In: Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-70665-4_2

Download citation

Publish with us

Policies and ethics