Skip to main content

Hybrid Strategy Coupling EGO and CMA-ES for Structural Topology Optimization in Statics and Crashworthiness

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2019)

Abstract

Topology Optimization (TO) represents a relevant tool in the design of mechanical structures and, as such, it is currently used in many industrial applications. However, many TO optimization techniques are still questionable when applied to crashworthiness optimization problems due to their complexity and lack of gradient information. The aim of this work is to describe the Hybrid Kriging-assisted Level Set Method (HKG-LSM) and test its performance in the optimization of mechanical structures consisting of ensembles of beams subjected to both static and dynamic loads. The algorithm adopts a low-dimensional parametrization introduced by the Evolutionary Level Set Method (EA-LSM) for structural Topology Optimization and couples the Efficient Global Optimization (EGO) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to converge towards the optimum within a fixed budget of evaluations. It takes advantage of the explorative capabilities of EGO ensuring a fast convergence at the beginning of the optimization procedure, as well as the flexibility and robustness of CMA-ES to exploit promising regions of the search space Precisely, HKG-LSM first uses the Kriging-based method for Level Set Topology Optimization (KG-LSM) and afterwards switches to the EA-LSM using CMA-ES, whose parameters are initialized based on the previous model. Within the research, a minimum compliance cantilever beam test case is used to validate the presented strategy at different dimensionalities, up to 15 variables. The method is then applied to a 15-variables 2D crash test case, consisting of a cylindrical pole impact on a rectangular beam fixed at both ends. Results show that HKG-LSM performs well in terms of convergence speed and hence represents a valuable option in real-world applications with limited computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    CalculiX is an open-source, 3D structural FEM software developed at MTU Aero Engines in Munich. CalculiX, Version 2.13, was used in this work: http://www.calculix.de/.

References

  1. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004). https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  2. Arsenyev, I.: Efficient Surrogate-based Robust Design Optimization Method. Ph.D. thesis, Technische Universität München (2017)

    Google Scholar 

  3. Aulig, N.: Generic topology optimization based on local state features. Ph.D. thesis, Technische Universität Darmstadt, VDI Verlag, Germany (2017)

    Google Scholar 

  4. Aulig, N., Olhofer, M.: State-based representation for structural topology optimization and application to crashworthiness. In: 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, pp. 1642–1649 (2016). https://doi.org/10.1109/CEC.2016.7743985

  5. Bendsøe, M.P., Sigmund, O.: Topology Optimization - Theory, Methods, and Applications, 2nd edn. Springer, Berlin (2004). http://www.springer.com/cn/book/9783540429920

  6. Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Evolutionary level set method for crashworthiness topology optimization. In: VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece (2016)

    Google Scholar 

  7. Bujny, M., Aulig, N., Olhofer, M., Duddeck, F.: Identification of optimal topologies for crashworthiness with the evolutionary level set method. Int. J. Crashworthiness 23(4), 395–416 (2018). https://doi.org/10.1080/13588265.2017.1331493

    Article  Google Scholar 

  8. Cressie, N.: The origins of kriging. Math. Geol. 22(3), 239–252 (1990). https://doi.org/10.1007/BF00889887

    Article  MathSciNet  MATH  Google Scholar 

  9. Duddeck, F., Volz, K.: A new topology optimization approach for crashworthiness of passenger vehicles based on physically defined equivalent static loads. In: ICrash International Crashworthiness Conference, Milano, Italy (2012)

    Google Scholar 

  10. Duddeck, F., Hunkeler, S., Lozano, P., Wehrle, E., Zeng, D.: Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Struct. Multidiscip. Optim. 54(3), 415–428 (2016). https://doi.org/10.1007/s00158-016-1445-y

    Article  Google Scholar 

  11. Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8(1), 42–51 (1994). https://doi.org/10.1007/BF01742933

    Article  Google Scholar 

  12. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. CRC Press (2005)

    Google Scholar 

  13. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design via Surrogate Modelling - A Practical Guide. John Wiley & Sons Ltd. (2008)

    Google Scholar 

  14. Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically - a new moving morphable components based framework. J. Appl. Mech. 81(8), 081009 (2014). https://doi.org/10.1115/1.4027609

    Article  Google Scholar 

  15. Haber, R., Bendsøe, M.P.: Problem formulation, solution procedures and geometric modeling: key issues in variable-topology optimization. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, USA (1998)

    Google Scholar 

  16. Hansen, N.: The CMA evolution strategy: a tutorial (2005). https://hal.inria.fr/hal-01297037, hal-01297037f

  17. Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, pp. 75–102. Springer, Berlin (2006). https://doi.org/10.1007/3-540-32494-1_4

  18. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996). https://doi.org/10.1109/ICEC.1996.542381

  19. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  20. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147

  21. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009). https://doi.org/10.1016/j.ejor.2007.10.013

  22. Lee, H.A., Park, G.J.: Nonlinear dynamic response topology optimization using the equivalent static loads method. Comput. Methods Appl. Mech. Eng. 283, 956–970 (2015). https://doi.org/10.1016/j.cma.2014.10.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Livermore Software Technology Corporation (LSTC), P. O. Box 712 Livermore, California 94551-0712: LS-DYNA KEYWORD USER’S MANUAL, Volume II - Material Models (2014). lS-DYNA R7.1

    Google Scholar 

  24. Livermore Software Technology Corporation (LSTC), P. O. Box 712 Livermore, California 94551-0712: LS-DYNA Theory Manual (2019)

    Google Scholar 

  25. Michell, A.G.M.: LVIII. The limits of economy of material in frame-structures. Philos. Mag. 8(47), 589–597 (1904). https://doi.org/10.1080/14786440409463229

    Article  MATH  Google Scholar 

  26. Mohammadi, H., Riche, R.L., Touboul, E.: Making EGO and CMA-ES complementary for global optimization. In: Learning and Intelligent Optimization. Lecture Notes in Computer Science, pp. 287–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6-29

  27. Mozumder, C., Renaud, J.E., Tovar, A.: Topometry optimisation for crashworthiness design using hybrid cellular automata. Int. J. Veh. Des. 60(1–2) (2012). https://trid.trb.org/view.aspx?id=1222579

  28. Ortmann, C., Schumacher, A.: Graph and heuristic based topology optimization of crash loaded structures. Struct. Multidiscip. Optim. 47(6), 839–854 (2013). https://doi.org/10.1007/s00158-012-0872-7

    Article  MATH  Google Scholar 

  29. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedersen, C.B.W.: Topology optimization design of crushed 2d-frames for desired energy absorption history. Struct. Multidiscip. Optim. 25(5–6), 368–382 (2003). https://doi.org/10.1007/s00158-003-0282-y

    Article  Google Scholar 

  31. Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley (1996)

    Google Scholar 

  32. Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-guided level set method for crash topology optimization. In: 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry. Stuttgart, Germany (2017)

    Google Scholar 

  33. Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., Duddeck, F.: Kriging-assisted topology optimization of crash structures. Comput. Methods Appl. Mech. Eng. 348, 730–752 (2019). https://doi.org/10.1016/j.cma.2019.02.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Raponi, E., Bujny, M., Olhofer, M., Boria, S., Duddeck, F.: Hybrid kriging-assisted level set method for structural topology optimization. In: Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), Vienna, Austria, pp. 70–81 (2019). https://doi.org/10.5220/0008067800700081

  35. Raponi, E., Wang, H., Bujny, M., Boria, S., Doerr, C.: High dimensional Bayesian optimization assisted by principal component analysis. In: Parallel Problem Solving from Nature, PPSN XVI, pp. 169–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_12

  36. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Raponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raponi, E., Bujny, M., Olhofer, M., Boria, S., Duddeck, F. (2021). Hybrid Strategy Coupling EGO and CMA-ES for Structural Topology Optimization in Statics and Crashworthiness. In: Merelo, J.J., Garibaldi, J., Linares-Barranco, A., Warwick, K., Madani, K. (eds) Computational Intelligence. IJCCI 2019. Studies in Computational Intelligence, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-030-70594-7_3

Download citation

Publish with us

Policies and ethics