Skip to main content

Digital Twin of Continuously Variable Transmission for Predictive Modeling of Dynamics and Performance Optimization

  • Conference paper
  • First Online:
Technological Transformation: A New Role For Human, Machines And Management (TT 2020)

Abstract

The paper presents a digital twin of continuously variable transmission (CVT), developed by the authors, and intended for detailed predictive modeling of CVT dynamics. The paper addresses the problems of mathematical modeling of the device, the choice of a suitable numerical method for dynamics simulations, and the architecture of problem-oriented software implementing the functionality of the digital twin. Mathematical models proposed consider flexibility of almost all bodies the device consists of. Equations of motion yielding from the models are obtained in the framework of Lagrangian mechanics. Spectral properties of the equation of motion are analyzed in the context of applying numerical integration methods for dynamics problems. The initial value problem for ordinary differential equations of motion is solved using a variety of single step numerical integration methods; the most promising class of methods is found. Specialized software package is developed for practically solving problems of CVT dynamics. Most important principles of software design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srnik, J., Pfeiffer, F.: Dynamics of CVT chain drives. Int. J. Veh. Des. 22(1/2), 54–72 (1999)

    Article  Google Scholar 

  2. Neumann, L., Ulbrich, H., Pfeiffer, F.: New model of a CVT rocker pin chain with exact joint kinematics. ASME J. Comput. Non-linear Mech. 1(2), 143–149 (2006)

    Google Scholar 

  3. Geier, T., Foerg, M., Zander, R., Ulbrich, H., Pfeiffer, F., Brandsma, A., van der Velde, A.: Simulation of a push belt CVT considering uni- and bilateral constraints. ZAMM – J. Appl. Math. Mech./Zeitschrift fürAngewandteMathematik und Mechanik 86(10), 795–806 (2006)

    Article  MathSciNet  Google Scholar 

  4. Neumann, L., Ulbrich, H., Pfeiffer, F.: Optimisation of the joint geometry of a rocker pin chain. Mach. Dyn. Probl. 29(4), 97–108 (2005)

    Google Scholar 

  5. Bullinger, M., Pfeiffer, F., Ulbrich, H.: Elastic modelling of bodies and contacts in continuous variable transmissions. Multibody Syst. Dyn. 13(2), 175–194 (2005)

    Article  Google Scholar 

  6. Schindler, T., Friedrich, M., Ulbrich, H.: Computing time reduction possibilities in multibody dynamics. In: Arczewski, K. et al (eds.) Computational Methods and Applications, pp. 239–259. Springer, Dordrecht (2011)

    Google Scholar 

  7. Lebrecht, W., Pfeiffer, F., Ulbrich, H.: Analysis of self-induced vibrations in a pushing V-belt CVT. In: International Continuously Variable and Hybrid Transmission Congress, paper no. 04CVT-32 (2004)

    Google Scholar 

  8. Bullinger, M., Funk, K., Pfeiffer, F.: An elastic simulation model of a metal pushing VBelt CVT. In: Ambrósio, J.A. (ed.) Advances in Computational Multibody Systems, pp. 269–293. Springer, Dordrecht (2006)

    Google Scholar 

  9. Srivastava, N., Haque, I.: Clearance and friction-induced dynamics of chain CVT drives. Multibody Syst. Dyn. 19(3), 255–280 (2008)

    Article  Google Scholar 

  10. Sedlmayr, M., Pfeiffer, F.: Spatial contact mechanics of CVT chain drives. In: Proceedings of the ASME Design Engineering Technical Conference, vol. 6, pp. 1789–1795 (2001)

    Google Scholar 

  11. Sedlmayr, M., Bullinger, M., Pfeiffer, F.: Spatial dynamics of CVT chain drives. In: VDIBerichte nr. 1709: CVT 2002 Congress, pp. 511–527. VDI-Verlag GmbH, Düsseldorf (2002)

    Google Scholar 

  12. Schindler, T.: Spatial dynamics of pushbeltCVTs, vol. 730. Düsseldorf: VDIVerlag (Fortschritt-BerichteVDI: Reihe 12, Verkehrstechnik, Fahrzeugtechnik) (2010)

    Google Scholar 

  13. Carbone, G., Mangialardi, L., Mantriota, G.: The influence of pulley deformations on the shifting mechanism of metal belt CVT. J. Mech. Des. 127(1), 103–113 (2005)

    Article  Google Scholar 

  14. Bradley, T.H.: Simulation of continuously variable transmission chain drives with involute inter-element contact surfaces. Ph.D. thesis, Sacramento (California): University of California, 154 p. (2003)

    Google Scholar 

  15. Кaмeнcкoв, B.Ю.: Coвepшeнcтвoвaниe экcплyaтaциoнныx cвoйcтв aвтoмoбильнoгo фpикциoннoгo вapиaтopa c мeтaлличecкoй цeпью. Ph.D. thesis, Mocквa: Mocк. гoc. тexн. yн-т им. H.Э. Бayмaнa, 136 p. (2009)

    Google Scholar 

  16. Гaнтмaxep, Ф.P.: Лeкции пo aнaлитичecкoй мexaникe. 2-e изд., M.: Hayкa (1966)

    Google Scholar 

  17. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz, JV., Wolf, S.: The functional mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference (2011)

    Google Scholar 

  18. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  19. Биpгep, И.A., Пaнoвкo, A.Г.: Пpoчнocть, ycтoйчивocть, кoлeбaния. Cпpaвoчник в тpex тoмax. т. 2, M.: Maшинocтpoeниe (1968)

    Google Scholar 

  20. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005)

    Article  MathSciNet  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems. Springer, Heidelberg (Springer Series in Computational Mathematics) (2013)

    Google Scholar 

  22. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (2000)

    MATH  Google Scholar 

  23. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Springer, Secaucus (2002)

    Book  Google Scholar 

  24. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comput. 33(146), 521–534 (1979)

    Article  MathSciNet  Google Scholar 

  25. Knoll, D., Keyes, D.: Jacobian-free Newton – Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  Google Scholar 

  26. Brown, J., Brune, P.: Low-rank quasi-Newton updates for robust Jacobian lagging in Newton methods. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, pp. 2554–2565 (2013)

    Google Scholar 

  27. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)

    Article  MathSciNet  Google Scholar 

  28. Martin-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge – Kutta methods for stiff problems. Comput. Phys. Commun. 180(10), 1802–1810 (2009)

    Article  MathSciNet  Google Scholar 

  29. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge – Kutta methods with application to hyperbolic – parabolic equations. Numer. Math. 106(2), 303–334 (2007)

    Google Scholar 

  30. Orlov, S., Melnikova, N.: Compound object model for scalable system development in C++. Procedia Comput. Sci. 66, 651–660 (2015)

    Google Scholar 

  31. Orlov, S.G.: Low dimension models of continuously variable transmission dynamics. Doklady Math. 97(2), 152–156 (2018). https://doi.org/10.1134/S106456241802014X

    Article  MathSciNet  MATH  Google Scholar 

  32. Lebedev, V.I.: Explicit difference schemes for solving stiff problems with a complex or separable spectrum. Comput. Math. Math. Phys. 40, 1729–1740 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Russian Science Foundation for their support of research under grant No. 18-11-00245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Orlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orlov, S., Burkovski, L. (2021). Digital Twin of Continuously Variable Transmission for Predictive Modeling of Dynamics and Performance Optimization. In: Schaumburg, H., Korablev, V., Ungvari, L. (eds) Technological Transformation: A New Role For Human, Machines And Management. TT 2020. Lecture Notes in Networks and Systems, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-030-64430-7_9

Download citation

Publish with us

Policies and ethics