Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 332))

Abstract

Recently, unmanned aerial vehicles (UAVs), or drones, can be used to complete several different military tasks to the industry with numerous studies available in the literature. With the accelerated development of technologies, especially computing, sensing, the Internet of things (IoT), and Information and Communication Technologies (ICT), the demand for using drones has been increased in real-world applications. However, there will be more accidents when more drones are active in the sky. Therefore, it is essential to manage drones in operation areas, especially the urban environment. This research introduces an approach, called a cloud-based approach for managing drones in a smart city. This approach is based on the cloud devices and services such as computation, storage, and web services. A ground control station controls and monitors drones, allowing users to define path planning and achieve the information from drone’s sensors. Users, or remoted pilots, can create paths or missions for drones, saved, and transferred to a connected drone. This approach lets users control and monitor drones as connected objects in a real-time environment. An experimental study of monitoring and controlling drones via the Internet (4G D-com Viettel) has been carried out, aiming to evaluate the real-time performance of monitoring and controlling drones. The experimental results have illustrated that the proposed method is a cloud solution that enables to manage and control drones in a real-time environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cuffari, B.: Using Sensors in Drones (2018). https://www.azosensors.com/article.aspx?ArticleID=1149. Accessed 20 May 2020

  2. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Usmani, R.S.A., Nayyar, A.: Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs). Comput. Commun. (2020)

    Google Scholar 

  3. Puri, V., Nayyar, A., Raja, L.: Agriculture drones: a modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 20(4), 507–518 (2017)

    Google Scholar 

  4. Unmanned Aerial Vehicle (UAV) Market. https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html. Accessed 8 Feb 2020

  5. The Commercial Drone Market Is Experiencing Steady, Sustained Growth and Consolidation, with Global Revenue Expected to Reach $13.7 Billion by 2025. https://tractica.omdia.com/newsroom/press-releases/the-commercial-drone-market-is-experiencing-steady-sustained-growth-and-consolidation-with-global-revenue-expected-to-reach-13-7-billion-by-2025/. Accessed 8 Feb 2020

  6. Nayyar, A., Nguyen, B.L., Nguyen, N.G.: The Internet of Drone Things (IoDT): future envision of smart drones. In: First International Conference on Sustainable Technologies for Computational Intelligence, pp. 563–580. Springer, Singapore (2020)

    Google Scholar 

  7. Bruzzone, A. et al.: Disasters and emergency management in chemical and industrial plants: drones simulation for education and training. In: International Workshop on Modelling and Simulation for Autonomous Systems, pp. 301–308. Springer (2016)

    Google Scholar 

  8. Kopardekar, P.H.: Unmanned aircraft systems traffic management (UTM) safely enabling UAS operations in low-altitude airspace. Presented at the UAV Industry Conference—Drones for Business Success, Auckland, New Zealand (2017)

    Google Scholar 

  9. Prevot, T., Rios, J., Kopardekar, P., Robinson, J.E., III, Johnson, M., Jung, J.: UAS traffic management (UTM) concept of operations to safely enable low altitude flight operations. In: 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, United States (2017)

    Google Scholar 

  10. Pathiyil, L., Low, K., Soon, B.H., Mao, S.: Enabling safe operations of unmanned aircraft systems in an urban environment: a preliminary study. In: The International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications—ESAVS (2016)

    Google Scholar 

  11. Jiang, T., Geller, J., Ni, D., Collura, J.: Unmanned aircraft system traffic management: concept of operation and system architecture. Int. J. Transp. Sci. Technol. 5(3), 123–135 (2016)

    Article  Google Scholar 

  12. Foina, A.G., Krainer, C., Sengupta, R.: An unmanned aerial traffic management solution for cities using an air parcel model. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1295–1300. IEEE (2015)

    Google Scholar 

  13. Szullo, A., Seller, R., Rohacs, D., Renner, P.: Multilateration based UAV detection and localization. In: Proceedings of the 18th International Radar Symposium (IRS), 28–30 June, Praha, p. 10. IEEE. https://doi.org/10.23919/irs.2017.8008235

  14. Dobi, S., Rohács, D.: HungaroControl nemzetközi szerepvállalás az UTM környezetben: A USIS projekt. Proceedings of the XII. Innováció és Fenntartható Felszíni Közlekedés, 29–31 Aug 2018, Budapest, Paper 42, p. 5. kitt.uni-buda.hu/mmaws/2018/pages/program/papers/Paper_42_Dobi-Rohács_D_IFFK_2018.pdf

    Google Scholar 

  15. Wang, X., Yadav, V., Balakrishnan, S.: Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 672–679 (2007)

    Article  Google Scholar 

  16. IEEE International Conference on Robotics and Automation (ICRA), 21–25 May 2018, Brisbane, Australia, 2018, pp. 6365–6372

    Google Scholar 

  17. Alfeo, A.L., Cimino, M.G.C.A., De Francesco, N., Lazzeri, A., Lega, M., Vaglini, G.: Swarm coordination of mini-UAVs for target search using imperfect sensors. Intell. Decis. Technol. 12(2), 149–162 (2018)

    Article  Google Scholar 

  18. Nguyen, D.D.: A developed particles swarm optimisation algorithm for managing drones in smart cities. Presented at the International Symposium on Sustainable Aviation 2019, 26–29 May 2019, Budapest, Hungary, Proceedings, p. 4

    Google Scholar 

  19. Erdelj, M., Król, M., Natalizio, E.: Wireless sensor networks and multi-UAV systems for natural disaster management. Comput. Netw. 124, 72–86 (2017)

    Article  Google Scholar 

  20. Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S.G., Bian, L.: Drones for disaster response and relief operations: a continuous approximation model. Int. J. Prod. Econ. 188, 167–184 (2017)

    Google Scholar 

  21. Park, K.-N., Kang, J.-H., Cho, B.-M., Park, K.-J., Kim, H.: Handover management of net-drones for future Internet platforms. Int. J. Distrib. Sens. Netw. 12(3) (2016)

    Google Scholar 

  22. Pereira, A.A., Espada, J.P., Crespo, R.G., Aguilar, S.R.: Platform for controlling and getting data from network connected drones in indoor environments. Future Gen. Comput. Syst. 92, 656–662 (2019)

    Google Scholar 

  23. Nguyen, D.D., Rohacs, J.: The drone-following models in smart cities. In: 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), pp. 1–6. IEEE (2018)

    Google Scholar 

  24. Nguyen, D.D.: Developing models for managing drones in the transportation system in smart cities. Electr. Control Commun. Eng. 15(2), 71–78 (2019)

    Article  Google Scholar 

  25. Chuang, H., Hou, K.L., Rho, S., Chen, B.W.: Cooperative comodule discovery for swarm-intelligent drone arrays. Comput. Commun. 154, 528–533 (2020)

    Article  Google Scholar 

  26. Bera, B., Chattaraj, D., Das, A.K.: Designing secure blockchain-based access control scheme in IoT-enabled Internet of Drones deployment. Comput. Commun. 153, 229–249 (2020)

    Article  Google Scholar 

  27. Lin, X., et al.: Mobile network-connected drones: field trials, simulations, and design insights. IEEE Veh. Technol. Mag. 14(3), 115–125 (2019)

    Article  Google Scholar 

  28. Kishore, S., Rogan, N., Aman Pandey, S., Nagasudhan, N., Vikram Raj, K.: IoT based unmanned aerial vehicle for mobile monitoring and management of municipal solid waste (MSW) landfill sites and air quality index (AQI). Int. J. Sci. Technol. Res. 8(11), 3671–3678 (2019)

    Google Scholar 

  29. Khan, N.A., Jhanjhi, N.Z., Brohi, S.N., Nayyar, A.: Emerging use of UAV’s: secure communication protocol issues and challenges. In: Drones in Smart-Cities, pp. 37–55. Elsevier (2020)

    Google Scholar 

  30. Mirzaeinia, A., Bradley, S., Hassanalian, M.: Drone-station matching in smart cities through Hungarian algorithm: power minimization and management. In: AIAA Propulsion and Energy Forum (2019)

    Google Scholar 

  31. Hoang, V.T., Phung, M.D., Dinh, T.H., Ha, Q.P.: Angle-encoded swarm optimization for UAV formation path planning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5239–5244. IEEE (2018)

    Google Scholar 

  32. Vattapparamban, E., Güvenç, İ., Yurekli, A.İ., Akkaya, K., Uluağaç, S.: Drones for smart cities: issues in cybersecurity, privacy, and public safety. In: 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 216–221 (2016)

    Google Scholar 

  33. Fedorko, G., Žofčinová, V., Molnár, V.: Legal aspects concerning use of drones in the conditions of the slovak republic within the sphere of intra-logistics. Period. Polytech. Transp. Eng. 46(4), 17–84 (2018)

    Google Scholar 

  34. Barmpounakis, E.N., Vlahogianni, E.I., Golias, J.C.: Unmanned aerial aircraft systems for transportation engineering: current practice and future challenges. Int. J. Transp. Sci. Technol. 5(3), 111–122 (2016)

    Article  Google Scholar 

  35. Péter, T., Szabó, K.: A new network model for the analysis of air traffic networks. Period. Polytech. Transp. Eng. 40(1), 39–44 (2012)

    Article  Google Scholar 

  36. Stöcker, C., Bennett, R., Nex, F., Gerke, M., Zevenbergen, J.: Review of the current state of UAV regulations. Remote Sens. 9(5) (2017)

    Google Scholar 

  37. Nguyen, D.D., Rohacs, J.: Smart city total transport-managing system. In: International Conference on Industrial Networks and Intelligent Systems. pp. 74–85. Springer, Cham (2018)

    Google Scholar 

  38. Gupta, Lav, Jain, Raj, Vaszkun, Gabor: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2015)

    Article  Google Scholar 

  39. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., Mohammed, F.: Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Change (2018)

    Google Scholar 

  40. Marchese, M., Moheddine, A., Patrone, F.: IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors (Basel) 19(17) (2019)

    Google Scholar 

  41. Zhou, Z., Feng, J., Zhang, C., Chang, Z., Zhang, Y., Huq, K.M.S.: SAGECELL: software-defined space-air-ground integrated moving cells. IEEE Commun. Mag. 56(8), 92–99 (2018)

    Article  Google Scholar 

  42. Athanasiadou, G.E., Batistatos, M.C., Zarbouti, D.A., Tsoulos, G.V.: LTE ground-to-air field measurements in the context of flying relays. IEEE Wirel. Commun. 26(1), 12–17 (2019)

    Google Scholar 

  43. Al-Turjman, Fadi, Abujubbeh, Mohammad, Malekloo, Arman, Mostarda, Leonardo: UAVs assessment in software-defined IoT networks: an overview. Comput. Commun. 150, 519–536 (2020)

    Article  Google Scholar 

  44. Yuan, Z., Jin, J., Sun, L., Chin, K., Muntean, G.: Ultra-reliable IoT communications with UAVs: a swarm use case. IEEE Commun. Mag. 56(12), 90–96 (2018)

    Article  Google Scholar 

  45. Ardupilot Open Source Autopilot (2020) [online]. Available at: http://ardupilot.org/. Accessed 27 May 2020

  46. Open Source for Drones PX4 Open Source Autopilot (2020) [online]. Available at: https://px4io/. Accessed 27 May 2020

    Google Scholar 

  47. INAV: Navigation-Enabled Flight Control Software (2020) [online]. Available at: https://github.com/iNavFlight/inav. Accessed 27 May 2020

  48. PaparazziUAV [online]. Available at: https://wiki.paparazziuav.org/wiki/Main_Page. Accessed 27 May 2020

  49. LibrePilot—Open—Collaborative—Free. Available at: https://www.librepilot.org/site/index.html. Accessed 27 May 2020

  50. Hayat, Samira, Yanmaz, Evşen, Muzaffar, Raheeb: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutor. 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  51. Nayyar, A., Puri, V.: Raspberry Pi—a small, powerful, cost effective and efficient form factor computer: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(12), 720–737 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Dung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, DD. (2021). Cloud-Based Drone Management System in Smart Cities. In: Krishnamurthi, R., Nayyar, A., Hassanien, A.E. (eds) Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead. Studies in Systems, Decision and Control, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-030-63339-4_8

Download citation

Publish with us

Policies and ethics