Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1289))

Included in the following conference series:

Abstract

The construction of Mapper has emerged in the last decade as a powerful and effective topological data analysis tool that approximates and generalizes other topological summaries, such as the Reeb graph, the contour tree, split, and joint trees. In this paper we study the parallel analysis of the construction of Mapper. We give a provably correct parallel algorithm to execute Mapper on a multiple processors. Our algorithm relies on a divide and conquer strategy for the codomain cover which gets pulled back to the domain cover. We demonstrate our approach for topological Mapper then we show how it can be applied to the statistical version of Mapper. Furthermore, we discuss the performance results that compare our approach to a reference sequential Mapper implementation. Finally, we report the performance experiments that demonstrate the efficiency of our method. To the best of our knowledge this is the first algorithm that addresses the computation of Mapper in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Computer Conference, pp. 483–485. ACM (1967)

    Google Scholar 

  2. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat-persistent homology algorithms toolbox. J. Symb. Comput. 78, 76–90 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Beineke, L.W., Wilson, R.J.: Topics in Algebraic Graph Theory, vol. 102. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: an efficient data structure for computing persistent cohomology. Algorithmica 73(3), 607–619 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Carlsson, E., Carlsson, G., De Silva, V.: An algebraic topological method for feature identification. Int. J. Comput. Geom. Appl. 16(04), 291–314 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76(1), 1–12 (2008)

    MathSciNet  Google Scholar 

  9. Carlsson, G., Mémoli, F.: Persistent clustering and a theorem of j. Kleinberg. arXiv preprint arXiv:0808.2241, 2008

  10. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J. Shape Model. 11(02), 149–187 (2005)

    MATH  Google Scholar 

  12. Carrière, M., Oudot, S.: Structure and stability of the 1-dimensional mapper. arXiv preprint arXiv:1511.05823 (2015)

  13. Chen, C., Kerber, M.: Persistent homology computation with a twist. In: Proceedings 27th European Workshop on Computational Geometry, vol. 11 (2011)

    Google Scholar 

  14. Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor for curve point cloud data. Comput. Graph. 28(6), 881–894 (2004)

    Google Scholar 

  15. Dey, T.K., Mémoli, F., Wang, Y.: Multiscale mapper: topological summarization via codomain covers. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 997–1013. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  16. Dey, T.K., Memoli, F., Wang, Y.: Topological analysis of nerves, reeb spaces, mappers, and multiscale mappers. arXiv preprint arXiv:1703.07387 (2017)

  17. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (2000)

    Google Scholar 

  18. Emmett, K., Schweinhart, B., Rabadan, R.: Multiscale topology of chromatin folding. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pp. 177–180. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2016)

    Google Scholar 

  19. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Gidea, M.: Topology data analysis of critical transitions in financial networks (2017)

    Google Scholar 

  21. Gueunet, C., Fortin, P., Jomier, J., Tierny, J.: Task-based augmented merge trees with fibonacci heaps. In: IEEE Symposium on Large Data Analysis and Visualization (2017)

    Google Scholar 

  22. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D morse-smale complexes and persistent homology using discrete morse theory. Vis. Comput. 28(10), 959–969 (2012)

    Google Scholar 

  23. Gyulassy, A., Pascucci, V., Peterka, T., Ross, R.: The parallel computation of morse-smale complexes. In: 2012 IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS), pp. 484–495. IEEE (2012)

    Google Scholar 

  24. Hajij, M., Rosen, P.: An efficient data retrieval parallel reeb graph algorithm. arXiv preprint arXiv:1810.08310 (2018)

  25. Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E.G., Matsue, K., Nishiura, Y.: Hierarchical structures of amorphous solids characterized by persistent homology. Proc. Natl. Acad. Sci. 113(26), 7035–7040 (2016)

    Google Scholar 

  26. Lewis, R.H., Zomorodian, A.: Multicore homology via mayer vietoris. arXiv preprint arXiv:1407.2275 (2014)

  27. Lipsky, D., Skraba, P., Vejdemo-Johansson, M.: A spectral sequence for parallelized persistence. arXiv preprint arXiv:1112.1245 (2011)

  28. Lum, P.Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., Carlsson, G.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236 (2013)

    Google Scholar 

  29. Morozov, D., Weber, G.: Distributed merge trees. In: ACM SIGPLAN Notices, vol. 48, pp. 93–102. ACM (2013)

    Google Scholar 

  30. Morozov, D., Weber, G.H.: Distributed contour trees (2012)

    Google Scholar 

  31. Müllner, D., Babu, A.: Python mapper: an open-source toolchain for data exploration, analysis, and visualization (2013). http://math.stanford.edu/muellner/mapper

  32. Munch, E., Wang, B.: Convergence between categorical representations of reeb space and mapper. arXiv preprint arXiv:1512.04108 (2015)

  33. Munkres, J.R.: Elements of Algebraic Topology, vol. 2. Addison-Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  34. Nicolau, M., Levine, A.J., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. 108(17), 7265–7270 (2011)

    Google Scholar 

  35. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)

    Google Scholar 

  36. Pascucci, V., Cole-McLaughlin, K.: Parallel computation of the topology of level sets. Algorithmica 38(1), 249–268 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Robins, V.: Towards computing homology from finite approximations. Topol. Proc. 24, 503–532 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Robles, A., Hajij, M., Rosen, P.: The shape of an image: a study of mapper on images. In: VISAPP 2018 (2018, to appear)

    Google Scholar 

  39. Rosen, P., Tu, J., Piegl, L.: A hybrid solution to calculating augmented join trees of 2D scalar fields in parallel. In: CAD Conference and Exhibition (2017, accepted)

    Google Scholar 

  40. Shivashankar, N., Senthilnathan, M., Natarajan, V.: Parallel computation of 2D Morse-Smale complexes. IEEE Trans. Vis. Comput. Graph. 18(10), 1757–1770 (2012)

    Google Scholar 

  41. Singh, G., Mémoli, F., Carlsson, G.E.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: SPBG, pp. 91–100 (2007)

    Google Scholar 

  42. Snášel, V., Nowaková, J., Xhafa, F., Barolli, L.: Geometrical and topological approaches to big data. Future Gener. Comput. Syst. 67, 286–296 (2017)

    Google Scholar 

  43. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. (TOG) 23(3), 399–405 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Hajij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajij, M., Assiri, B., Rosen, P. (2021). Parallel Mapper. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2 . FTC 2020. Advances in Intelligent Systems and Computing, vol 1289. Springer, Cham. https://doi.org/10.1007/978-3-030-63089-8_47

Download citation

Publish with us

Policies and ethics