Skip to main content

A PD-Folding-Based Controller for a 4DOF Robot

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1284))

Abstract

In this paper, an intelligent controller is proposed for high-accuracy position tracking control of a 4-degree-of-freedom (4DOF) robot. The control scheme is formatted using a 2-layer neural-network template, in which the first layer is encoded by a proportional-derivative structure, and the second layer is comprised of three different functions. Three ranges of perturbation that affects to the control performance are respectively treated by an offset learning, a folding PD control and high-switching control terms. The gains of the control terms are updated using modified gradient methods. Effectiveness of the proposed control is successfully verified by comparative simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, USA (2005)

    Google Scholar 

  2. Ba, D.X., Le, M.-H.: Gain-learning sliding mode control of robot manipulators with time-delay estimation. In: 2019 International Conference on System Science and Engineering (ICSSE) (2019)

    Google Scholar 

  3. Truong, H.V.A., Tran, D.T., Ahn, K.K.: A neural network based sliding mode control for tracking performance with parameters variation of a 3-DOF manipulator. Appl. Sci. 9, 2014–2023 (2019)

    Article  Google Scholar 

  4. Roco, P.: Stability of PID control for industrial robot arms. IEEE Trans. Robot. Autom. 12(4), 606–614 (1996)

    Article  Google Scholar 

  5. Su, Y., Muller, P.C., Zheng, C.: Global asymptotic saturated PID control for robot manipulators. IEEE Trans. Control Syst. Technol. 18, 1280–1288 (2010)

    Google Scholar 

  6. Yim, W., Singh, S.N.: Feedback linearization of differential-algebraic systems and force and position control of manipulators. In: Proceedings of the 1993 American Control Conference, San Francisco, CA, USA, 2–4 June 1993, pp. 2279–2283 (1993)

    Google Scholar 

  7. Tran, D.T., Ba, D.X., Ahn, K.K.: Adaptive backstepping sliding mode control for equilibrium position tracking of an electrohydraulic elastic manipulator. IEEE Trans. Electron 67, 860–869 (2019)

    Google Scholar 

  8. Ba, D.X., Yeom, H., Kim, J., Bae, J.B.: Gain-adaptive robust backstepping position control of a BLDC motor system. IEEE/ASME Trans. Mechatron. 23, 2470–2481 (2018)

    Article  Google Scholar 

  9. Ba, D.X., Yeom, H., Bae, J.B.: A direct robust nonsingular terminal sliding mode controller based on an adaptive time-delay estimator for servomotor rigid robots. Mechatronics 59, 82–94 (2019)

    Article  Google Scholar 

  10. Jin, M., Lee, J., Tsagarakis, N.G.: Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Trans. Ind. Electron. 64(2), 1706–1715 (2017)

    Article  Google Scholar 

  11. Baek, J., Jin, M., Han, S.: A new adaptive sliding mode control scheme for application to robot manipulators. IEEE Trans. Ind. Electron. 63(6), 3628–3637 (2016)

    Article  Google Scholar 

  12. Vo, A.T., Kang, H.-J.: An adaptive neural non-singular fast-terminal sliding-mode control for industrial robotic manipulators. Appl. Sci. 8, 2562 (2018)

    Article  Google Scholar 

  13. Wai, R.J., Muthusamy, R.: Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics. IEEE Trans. Fuzzy Syst. 22, 709–722 (2014)

    Article  Google Scholar 

  14. Le, T.D., Kang, H.-J., Suh, Y.-S., Ro, Y.-S.: An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-DOF parallel manipulator. Neurocomputing 116, 53–61 (2013)

    Article  Google Scholar 

  15. Skoczowski, S., Domesk, S., Pietrusewicz, K., Broel-Plater, B.: A method for improving the robustness of PID control. IEEE Trans. Ind. Electron. 58(6), 1669–1676 (2005)

    Article  Google Scholar 

  16. Pan, Y., Li, X., Yu, H.: Efficient PID tracking control of robotic manipulators driven by compliant actuators. IEEE Trans. Control Syst. Technol. 27(2), 915–922 (2019)

    Article  Google Scholar 

  17. Meza, J.L., Santibanez, V., Soto, S., Llama, M.A.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2011)

    Article  Google Scholar 

  18. Liu, Z., Lai, G., Zhang, Y., Chen, P.: Adaptive fuzzy tracking control of nonlinear time-delay systems with dead–zone output mechanism based on a novel smooth model. IEEE Trans. Fuzzy Syst. 23(6), 1998–2011 (2015)

    Article  Google Scholar 

  19. Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L., Su, C.Y.: Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans. Fuzzy Syst. 27(3), 574–588 (2019)

    Article  Google Scholar 

  20. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  21. Ba, D.X., Truong, D.Q., Ahn, K.K.: An integrated intelligent nonlinear control method for pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 21(4), 1835–1845 (2016)

    Article  Google Scholar 

  22. Thanh, T.U.D.C., Ahn, K.K.: Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16, 577–587 (2006)

    Article  Google Scholar 

  23. Ba, D.X., Ahn, K.K., Tai, N.T.: Adaptive integral-type neural sliding mode control for pneumatic muscle actuator. Int. J. Autom. Technol. 8(6), 888–895 (2014)

    Article  Google Scholar 

  24. Le, T.D., Kang, H.J., Suh, Y.S., Ro, Y.S.: An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-DOF parallel manipulator. Neurocomputing 11, 53–61 (2013)

    Article  Google Scholar 

  25. Ahn, K.K., Nguyen, H.T.C.: Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network. Mechatronics 17, 255–262 (2007)

    Article  Google Scholar 

  26. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulator. Macmillan, New York (1993)

    Google Scholar 

  27. Yasui, S.: Stochastic functional fourier series, volterra series, and nonlinear systems analysis. IEEE Trans. Autom. Control 24(2), 230–242 (1979)

    Article  MathSciNet  Google Scholar 

  28. Abid, S., Fnaiech, F., Najim, M.: A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm. IEEE Trans. Neural Netw. 12(2), 424–430 (2001)

    Article  Google Scholar 

  29. Lin, N.Q., Xuan, D.M., Ba, D.X.: Advanced control design for a high-precision heating furnace using combination of PI/neural network. J. Tech. Educ. Sci. 55, 25–31 (2020)

    Google Scholar 

  30. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Ind. Electron. 13(4), 559–576 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees and editors for their valuable comments, which helped to improve the paper quality. This work is funded by the Vietnam National Foundation for Science and Technology (NAFOSTED) under grant number 107.01-2020.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Xuan Ba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tai, V.T., Minh, D.N., Ba, D.X. (2021). A PD-Folding-Based Controller for a 4DOF Robot. In: Huang, YP., Wang, WJ., Quoc, H.A., Giang, L.H., Hung, NL. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2020. Advances in Intelligent Systems and Computing, vol 1284. Springer, Cham. https://doi.org/10.1007/978-3-030-62324-1_11

Download citation

Publish with us

Policies and ethics