Skip to main content

Conceptual Design of a Microscale Balance Based on Force Compensation

  • Conference paper
  • First Online:
Microactuators, Microsensors and Micromechanisms (MAMM 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 96))

Included in the following conference series:

Abstract

Macroscopic electromagnetic force compensation (EMFC) balances are well established but were not yet demonstrated within microsystems. Hence, in this paper, the concept and the design of a micro fabricated force compensation balance is presented. The implemented concentrated compliance mechanism in form of flexure hinges enables motion with high precision, which is combined with a force compensation mechanism. The concept of force compensation promises a high measurement range, which is expected to be up to 0.5 mN, while still enabling a high resolution of less than 8 nN. The developed dynamic model of the miniaturized balance is used for the design of a PID-controller strategy. Here, continuous and time-discrete controller approaches are compared. The time-discrete controller with realistic delay times, leads to an accuracy of the controller, which is better than the expected accuracy of the integrated capacitive position sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajagopalan, J., Tofangchi, A., Taher, M., Saif, A.: Linear high-resolution BioMEMS force sensors with large measurement range. J. Microelectromech. Syst. 19(6), 1380–1389 (2010)

    Google Scholar 

  2. Koch, S.J., Gayle, E.T., Corwin, A.D., de Boer, M.P.: Micromachined piconewton force sensor for biophysics investigations. Appl. Phys. Lett. 89, 173901 (2006)

    Google Scholar 

  3. Mao, Y.: In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl. Phys. Lett. 95, 013704 (2009)

    Article  Google Scholar 

  4. Beaussart, A., El-Kirat-Chatel, S., Sullan, R., et al.: Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat. Protoc. 9, 1049–1055 (2014)

    Article  Google Scholar 

  5. Rico, F., Roca-Cusachs, P., Sunyer, R., Farré, R., Navajas, D.: Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J. Mol. Recognit. 20(6), 466–495 (2007)

    Google Scholar 

  6. Chen, P., Zhao, Y., Li, Y.: Design, simulation and fabrication of a micromachined cantilever-based flow sensor. In: The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, pp. 681–684 (2013)

    Google Scholar 

  7. Nwokeoji A.O., Kumar S., Kilby P.M., Portwood D. E., Hobbs J. K., Dickman M.J.: Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase. In: HPLC, vol. 144, p. 4985 (2019)

    Google Scholar 

  8. Diethold, C., Hilbrunner, F.: Force measurement of low forces in combination with high dead loads by the use of electromagnetic force compensation. Measure. Sci. Technol. 23(074017), 7 (2012)

    Google Scholar 

  9. Yamakawa, Y., Yamazaki, T., Tamura, J., Tanaka O.: Dynamic behaviors of a checkweigher with electromagnetic force compensation. In: XIX IMEKO World Congress Fundamental and Applied Metrology (2009)

    Google Scholar 

  10. Vasilyan, S., Rivero, M., Schleichert, J., Halbedel, B., Fröhlich, T.: High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system. Meas. Sci. Technol. 27, 045107 (2016)

    Article  Google Scholar 

  11. Pratt, J.R., Kramar, J.A.: Si realization of small forces using an electrostatic force balance. In: XVIII IMEKO World Congress Metrology for a Sustainable Development (2006)

    Google Scholar 

  12. Shaw, G.A.: Gordon a Milligram mass metrology using an electrostatic force balance. Metrologia 53, A86 (2016)

    Article  Google Scholar 

  13. Schlaak, H.F., Arndt, F., Steckenborn, A., Gevatter, H.J., Kiesewetter, L., Grethen, H.: Micromechanical capacitive acceleration sensor with force compensation. In: Reichl, H. (ed.) Micro System Technologies 90. Springer, Heidelberg (1990)

    Google Scholar 

  14. Kraft, M., Lewis, C.P., Hesketh, T.G.: Control system design study for a micromachined accelerometer. In: IFAC New Trends in Design of Control Systems, Smolenice, Slovak Republic (1997)

    Google Scholar 

  15. Mertz, J., Marti, O., Mlynek, J.: Regulation of a microcantilever response by force feedback. Appl. Phys. Lett. 62, 2344 (1993)

    Article  Google Scholar 

  16. Shen, Y., Winder, E., Ning, X., Pomeroy, C.A., Wejinya, U.C.: Closed-loop optimal control-enabled piezoelectric microforce sensorsieee/asme trans. Mechatronics 11, 420 (2006)

    Google Scholar 

  17. Lil, J., Chen, H., Li, Y.: Investigation on surface forces measurement using force- balanced MEMS sensor. In: Conference on Nano/Micro Engineered and Molecular Systems (2006)

    Google Scholar 

  18. Coskun, M.B, Moore, S., Moheimani, S.O.R., Neild, A., Alan, T: Zero displacement microelectromechanical force sensor using feedback control. Appl. Phys. Lett. 104, 153502 (2014)

    Google Scholar 

  19. Fettig, H., Wylde, J., Hubbard, T., Kujath, M.: Simulation, dynamic testing and design of micromachined flexible joints. J. Micromech. Microeng. 11, 209–216 (2001)

    Article  Google Scholar 

  20. Linß, S., Gräser, P., Henning, S., Harfensteller, F., Theska, R., Zentner, L.: Synthesis method for compliant mechanisms of high-precision and large-stroke by use of individually shaped power function flexure hinges. In: Uhl, T. (ed.) Advances in Mechanism and Machine Science, Mechanisms and Machine Science, p. 73 (2019)

    Google Scholar 

  21. Henning, S., Linß, S., Zentner, L.: detasFLEX – a computational design tool for the analysis of various notch flexure hinges based on non-linear modeling. Mech. Sci. 9, 389–404 (2018)

    Article  Google Scholar 

  22. Darnieder, M., Pabst, M., Wenig, R., Zentner, L., Theska, R., Fröhlich, T.: Static behavior of weighing cells. J. Sens. Sens. Syst. 7, 587–600 (2018)

    Article  Google Scholar 

  23. Lobontiu, N.: Dynamics of Microelectromechanical Systems. Springer, New York (2007)

    Book  Google Scholar 

  24. Bao, M.H.: Handbook of Sensors and Actuators, 2nd edn, vol. 8, Elsevier, Amsterdam (2004)

    Google Scholar 

  25. Rogge, N. Weiß, H., Kaiser, I., Amthor, A. Hilbrunner, F., Fröhlich, T.: Design of digital controllers for electromagnetic force compensated balances focused on the disturbance transfer function. In: NCSLI International Workshop and Symposium (2016)

    Google Scholar 

  26. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Wedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wedrich, K., Darnieder, M., Vierzigmann, E., Barth, A., Theska, R., Strehle, S. (2021). Conceptual Design of a Microscale Balance Based on Force Compensation. In: Zentner, L., Strehle, S. (eds) Microactuators, Microsensors and Micromechanisms. MAMM 2020. Mechanisms and Machine Science, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-61652-6_9

Download citation

Publish with us

Policies and ethics