Skip to main content

Numerical Algorithms in Mechanics of Generalized Continua

  • Chapter
  • First Online:
Algorithms as a Basis of Modern Applied Mathematics

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 404))

  • 390 Accesses

Abstract

We study from a numerical point of view the solution of the system of partial differential equations arising in the theory of isotropic dipolar thermoelasticity with double porosity. We write the variational formulation and introduce fully discrete approximations by using the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the first-order time derivatives. By using these algorithms, we perform numerical simulations in order to show the behaviour of the solution. To this end, we use the finite element software FreeFem++.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of generalized continua. Springer (2011)

    Google Scholar 

  2. Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20(9), 1088–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braess, D.: Finite Elemente-Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer (2007)

    Google Scholar 

  4. Ciarletta, M., Ieşan, D.: Non-classical Elastic Solids. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, London (1993)

    Google Scholar 

  5. Chirilă, A., Marin, M.: The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity. J. Mater. Sci. 53, 3470–3482 (2018)

    Article  Google Scholar 

  6. Drugan, W.J., Lakes, R.S.: Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Z. Angew. Math. Phys. 69, 24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hecht, F.: FreeFEM Documentation-Release v4.2.1 (2019)

    Google Scholar 

  8. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Google Scholar 

  9. Fernandez, J.R., Magana, A., Masid, M., Quintanilla, R.: Analysis for the strain gradient theory of porous thermoelasticity. J. Comput. Appl. Math. 345, 247–268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez, J.R., Masid, M.: A porous thermoelastic problem: an a priori error analysis and computational experiments. Appl. Math. Comput. 305, 117–135 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics: functional theory I. Proc. R. Soc. Lond. A 284, 303–324 (1965)

    Article  MathSciNet  Google Scholar 

  12. Hassan, M., Marin, M., Ellahi, R., Alamri, S.Z.: Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf. Res. 49(18), 1837–1848 (2018)

    Article  Google Scholar 

  13. Ieşan, D.: Deformation of chiral cylinders in the gradient theory of porous elastic solids. Math. Mech. Solids 21(9), 1138–1148 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ieşan, D.: Thermoelastic Models of Continua. Springer (2004)

    Google Scholar 

  15. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with double porosity structure. J. Therm. Stress. 37, 1017–1036 (2014)

    Article  Google Scholar 

  16. Iovane, G., Nasedkin, A.V.: Finite element analysis of static problems for elastic media with voids. Comput. Struct. 84, 19–24 (2005)

    Article  Google Scholar 

  17. Iovane, G., Nasedkin, A.V.: Finite element dynamic analysis of anisotropic elastic solids with voids. Comput. Struct. 87, 981–989 (2009)

    Article  Google Scholar 

  18. Kirchner, N., Steinmann, P.: Mechanics of extended continua: modeling and simulation of elastic microstretch materials. Comput. Mech. 40, 651–666 (2007)

    Article  MATH  Google Scholar 

  19. Marin, M.: Cesaro means in thermoelasticity of dipolar bodies. Acta Mech. 122(1–4), 155–168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marin, M., Chirilă, A., Codarcea, L., Vlase, S.: On vibrations in Green-Naghdi thermoelasticity of dipolar bodies. Analele Ştiinţifice ale Universităţii Ovidius Constanţa - Seria Matematică 27(1), 125–140 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marin, M., Ellahi, R., Chirilă, A.: On solutions of Saint-Venant’s problem for elastic dipolar bodies with voids. Carpath. J. Math. 33(2), 199–212 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Contin. Mech. Thermodyn. 28, 1645–1657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Springer (2010)

    Google Scholar 

  24. Mindlin, R.D.: Microstructure in Linear Elasticity. Columbia University, New York (1963)

    Book  Google Scholar 

  25. Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A 93, 032324 (2016)

    Article  Google Scholar 

  26. Svanadze, M.: Potential method in the theory of thermoelasticity for materials with triple voids. Arch. Mech. 71(2), 113–136 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Zervos, A.: Finite elements for elasticity with microstructure and gradient elasticity. Int. J. Numer. Methods Eng. 73, 564–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina Chirilă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chirilă, A., Marin, M. (2021). Numerical Algorithms in Mechanics of Generalized Continua. In: Hošková-Mayerová, Š., Flaut, C., Maturo, F. (eds) Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-030-61334-1_9

Download citation

Publish with us

Policies and ethics