Skip to main content

An Algorithmic Perspective on the Thermoelasticity of the Micromorphic Materials Using Fractional Order Strain

  • Chapter
  • First Online:
Algorithms as a Basis of Modern Applied Mathematics

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 404))

  • 395 Accesses

Abstract

The chapter is dealing with the approach to the micromorphic materials linear thermoelasticity, its purpose being to present an algorithmic perspective in obtaining, on the one hand, the constitutive equations of this linear theory and the non-Fourier heat equation form, and on the other hand, in obtaining a reciprocal relation, by using the Caputo fractional derivative. This algorithmic perspective allows the creation of a technical scheme that can be followed in determining these basic relations of the linear thermoelasticity of the micromorphic materials, providing a model that can be used to determine these equations for other materials, thus the theory can be extended to various materials. The algorithmic transposition of a mathematical model always leads to a relaxation of the mathematical solution and to its systematization, the mathematical reasoning being presented in the form of concrete steps to be followed in order to obtain the solution of a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Băleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J. (2012) Fractional Calculus: Models and Numerical Methods, 2nd ed. Series on Complexity, Nonlinearity and Chaos, vol. 5. World Scientific. https://doi.org/10.1142/10044

  2. Cao, W., Yang, X., Tian, X.: Basic theorems in linear micromorphic thermoelasticity and their primary application. Acta Mech. Solida. Sin. 26(2), 161–176 (2013). https://doi.org/10.1016/S0894-9166(13)60016-6

  3. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967). https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

    Article  Google Scholar 

  4. Caputo, M., Fabrizio, M.: A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  5. Cattaneo, C.: Sulla conduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  6. Chirilă, A.: Generalized micropolar thermoelasticity with fractional order strain. Bull. Transilvania Univ. Braşov, Ser. III: Math. Inf. Phys. 10(59)(1), 83–90 (2017)

    Google Scholar 

  7. Codarcea-Munteanu, L., Marin, M.: Thermoelasticity with fractional order strain for dipolar materials with voids. Bull. Transilvania Univ. Braşov, Ser. III Math. Inf. Phys. 10(59)(2), 49–58 (2017)

    Google Scholar 

  8. Codarcea-Munteanu, L., Chirilă, A., Marin, M.: Modeling fractional order strain in dipolar thermoelasticity. IFAC PapersOnLine 51–2, 601–606 (2018a). https://doi.org/10.1016/j.ifacol.2018.03.102

    Article  Google Scholar 

  9. Codarcea-Munteanu, L., Marin, M.: Micropolar thermoelasticity with voids using fractional order strain. In: Models and Theories in Social Systems, vol. 179, pp. 133–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00084-4_7

  10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils, Paris (1909)

    Google Scholar 

  11. Eringen, A.C.: Balance laws of micromorphic mechanics. Int. J. Eng. Sci. 8(10), 819–828 (1970). https://doi.org/10.1016/0020-7225(70)90084-4

    Article  MATH  Google Scholar 

  12. Eringen, A.C.: Theory of micromorphic materials with memory. Int. J. Eng. Sci. 10(7), 623–641 (1972). https://doi.org/10.1016/0020-7225(72)90089-4

    Article  MATH  Google Scholar 

  13. Eringen, A.C.: Micromorphic elasticity. In: Microcontinuum Field Theories, pp. 269–285. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0555-5_7

  14. Eringen, A.C.: Microcontinuum field theories. I. Foundations and solids. Springer, New York (1999)

    Google Scholar 

  15. Galeş, C.: On the nonlinear theory of micromorphic thermoelastic solids. Math. Probl. Eng. 1, 1–16 (2010). https://doi.org/10.1155/2010/415304

  16. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964). https://doi.org/10.1007/BF00253051

    Article  MathSciNet  MATH  Google Scholar 

  17. Hassan, M., Marin, M., Ellahi, R., Alamri, S.: Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/Water hybrid-nanofluids. Heat Transf. Res. 49(18), 1837–1848 (2018). https://doi.org/10.1615/HeatTransRes.2018025569

    Article  Google Scholar 

  18. He, J.H.: A generalized variational principle in micromorphic thermoelasticity. Mech. Res. Commun. 32(1), 93–98 (2005). https://doi.org/10.1016/j.mechrescom.2004.06.006

    Article  MATH  Google Scholar 

  19. Hetnarski, R.B.: Thermal Stresses IV. Elsevier, Amsterdam (1996)

    Google Scholar 

  20. Ieşan, D. (1980) Generalized mechanics of solids. Univ. "Al. I. Cuza", Centrul de multiplicare, Iaşi

    Google Scholar 

  21. Ieşan, D.: On a theory of micromorphic elastic solids with microteperatures. J. Therm. Stresses 24(8), 737–752 (2001). https://doi.org/10.1080/014957301300324882

    Article  Google Scholar 

  22. Ieşan, D.: On the micromorphic thermoelasticity. Int. J. Eng. Sci. 40(5), 549–567 (2002). https://doi.org/10.1016/S0020-7225(01)00061-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Ieşan, D., Nappa, L.: On the theory of heat for micromorphic bodies. Int. J. Eng. Sci. 43(1–2), 17–32 (2005). https://doi.org/10.1016/j.ijengsci.2004.09.003

    Article  MathSciNet  MATH  Google Scholar 

  24. Ieşan, D.: Micromorphic elastic solids with initial stresses and initial heat flux. Int. J. Eng. Sci. 49(12), 1350–1356 (2011). https://doi.org/10.1016/j.ijengsci.2011.02.007

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, J.D., Chen, Y.: Material forces in micromorphic thermoelastic solids. Philos. Mag. 85(33–35), 3897–3910 (2005). https://doi.org/10.1080/14786430500362504

    Article  Google Scholar 

  26. Liu, W., Saanouni, K., Forest, S., Hu, P.: The micromorphic approach to generalized heat equations. J. Non-Equilib. Thermodyn. 42(4), 327–357 (2017). https://doi.org/10.1515/jnet-2016-0080

    Article  Google Scholar 

  27. Marin, M.: Cesaro means in thermoelasticity of dipolar bodies. Acta Mech. 122(1–4), 155–168 (1997). https://doi.org/10.1007/BF01181996

    Article  MathSciNet  MATH  Google Scholar 

  28. Marin, M., Vlase, S., Codarcea-Munteanu, L., Chirilă, A.: A generalization of the minimum principle energy for Cosserat porous materials. Acta Tech. Napocensis Ser. Appl. Math. Mech. Eng. 60(IV), 479–484 (2017)

    Google Scholar 

  29. Marin, M., Othman, M.I.A., Vlase, S., Codarcea-Munteanu, L: Thermoelasticity of initially stressed bodies with voids: a domain of influence. Symmetry 11(4) 573, 1–12 (2019). https://doi.org/10.3390/sym11040573

  30. Markov, A.A.: Theory of algorithms. J. Symb. Log. 22(1), 77–79 (1957). https://doi.org/10.2307/2964063

    Article  Google Scholar 

  31. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964). https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  32. Othman, I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory. Results Phys. 7, 3863–3872 (2017). https://doi.org/10.1016/j.rinp.2017.10.012

    Article  Google Scholar 

  33. Podlubny, I. (1998) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, 1st ed., vol. 198. Academic Press, New York

    Google Scholar 

  34. Povstenko, Y.: Fractional Thermoelasticity in Series Title: Solid Mechanics and its Applications (SMIA), vol. 219. Springer International Publishing Switzerland (2015). https://doi.org/10.1007/978-3-319-15335-3

  35. Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Continuum Mech. Thermodyn. 28(6), 1659–1670 (2016). https://doi.org/10.1007/s00161-016-0502-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Sheoran, H.H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47, 269–275 (2010)

    Article  Google Scholar 

  37. Svanadze, M.: Fundamental solutions in the theory of micromorphic elastic solids with microtemperatures. J. Therm. Stresses 27(4), 345–366 (2004). https://doi.org/10.1080/01495730490427582

    Article  MathSciNet  Google Scholar 

  38. Twiss, R.J., Eringen, A.C.: Theory of mixtures for micromorphic materials-I: balance laws. Int. J. Eng. Sci. 9(10), 1019–1044 (1971). https://doi.org/10.1016/0020-7225(71)90032-2

    Article  Google Scholar 

  39. Twiss, R.J., Eringen, A.C.: Theory of mixtures for micromorphic materials-II. Elastic constitutive equations. Int. J. Eng. Sci. 10(5), 437–465 (1972). https://doi.org/10.1016/0020-7225(72)90051-1

  40. Youssef, H.M.: Theory of generalized thermoelasticity with fractional order strain. J. Vib. Control 22(18), 3840–3857 (2016)

    Article  MathSciNet  Google Scholar 

  41. Yu, Y.J., Tian, X.G., Lu, T.J.: On fractional order generalized thermoelasticity with micromodeling. Acta Mech. 224(12), 2911–2927 (2013). https://doi.org/10.1007/s00707-013-0913-3

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeng, C.B., Liu, B., Wang, Z.J.: Generalized variational principles for micromorphic magnetoelectroelastodynamics. Comput. Math. Appl. 61(8), 2201–2204 (2011). https://doi.org/10.1016/j.camwa.2010.09.015

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia Codarcea-Munteanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Codarcea-Munteanu, L., Marin, M. (2021). An Algorithmic Perspective on the Thermoelasticity of the Micromorphic Materials Using Fractional Order Strain. In: Hošková-Mayerová, Š., Flaut, C., Maturo, F. (eds) Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, vol 404. Springer, Cham. https://doi.org/10.1007/978-3-030-61334-1_8

Download citation

Publish with us

Policies and ethics