Skip to main content

UAV Positioning and Navigation - Review

  • Conference paper
  • First Online:
Experimental and Computational Investigations in Engineering (CNNTech 2020)

Abstract

The capabilities of UAVs for civil and military operations are being largely improved by the advances made in UAV technology hence allowing UAVs to become a wide spread tool for a wide range of possible applications. This spread increases the need for more efficient and accurate navigation and positioning which means that improvement of existing and innovative new solutions for this challenge is going to remain of high interest to researchers. In this paper some of the most usual positioning and navigation methodologies are presented and comparisons between their advantages and disadvantages are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hofman-Wellenhof, B., Legat, K., Wieser, M.: Navigation: Principles of Positioning and Guidances, pp. 5–6. Springer, Heidelberg (2007). ISBN 978-3-211-00828-7

    Google Scholar 

  2. Sobel, D.: Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. Penguin Books, London (1996)

    Google Scholar 

  3. Masten, M.K., Stockum, L.A.: Precision stabilization and tracking systems for acquisition, pointing, and control applications. In: Society of Photo-Optical Instrumentation Engineers (SPIE) (1996)

    Google Scholar 

  4. Kerry, G.: The multi-state Kalman Filter in medical monitoring. Comput. Methods Programs Biomed. 23(2), 147–154 (1986)

    Article  Google Scholar 

  5. Lin, C.-F.: Modem Navigation, Guidance, and Control Processing. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  6. Prasad, R., Ruggieri, M.: Applied Satellite Navigation Using GPS, GALILEO, and Augmentation Systems. Artech House, Norwood (2005)

    Google Scholar 

  7. Kaplan, E.D., Christopher, J.H.: Ch. 1–4 Understanding GPS, 2nd edn. Artech House, London (2006)

    Google Scholar 

  8. Parkinson, B.W., Spilker Jr., J.J. (eds.): Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vols. 163 and 164. American Institute of Aeronautics and Astronautics (1996)

    Google Scholar 

  9. Kaplan, E.D.: Understanding GPS: Principles and Applications. Artech House, Norwood (1996)

    Google Scholar 

  10. Pace, S., Frost, G.P., Lachow, I., Frelinger, D.R., Fossum, D., Wassem, D., Pinto, M.M.: The global positioning system assessing national policies, GPS History. Chronology, and Budgets, Appendix A and Appendix B (1995)

    Google Scholar 

  11. El-Rabbany, A.: Introduction to GPS the Global Positioning System. Artech House, Norwood (2002)

    Google Scholar 

  12. Tsui, J.B.-Y.: Fundamentals of Global Positioning System Receivers: A Software Approach. Wiley, New York (2000)

    Book  Google Scholar 

  13. Gaposchkin, P.: Reference coordinate systems for earth dynamics. In: Proceedings of the 56th Colloquium of the International Astronomical Union, Warsaw, Poland, July 1981

    Google Scholar 

  14. Minkler, G., Minkler, J.: Aerospace Coordinate Systems and Transformations, Adelaide. Magellan Book Co., Australia (1990)

    Google Scholar 

  15. Wolper, J.S.: Understanding Mathematics for Aircraft Navigation. McGraw-Hill, New York (2001)

    Google Scholar 

  16. Sudano, J.J.: An exact conversion from an earth-centered coordinate system to latitude, longitude and altitude. In: Proceedings of the IEEE 1997 National Aerospace and Electronics Conference, NAECON 1997, 14–17 July 1997, vol. 2, pp. 646–650 (1997)

    Google Scholar 

  17. Maling, D.H.: Coordinate Systems and Map Projections, 2nd edn. Pergamon Press, New York (1992)

    Google Scholar 

  18. https://gisgeography.com/trilateration-triangulation-gps/. Accessed May 2020

  19. Abel, J.S., Chaffee, J.W.: Existence and uniqueness of GPS solutions. IEEE Trans. Aerosp. Electron. Syst. 27(6), 952–956 (1991)

    Article  Google Scholar 

  20. Fang, B.T.: Comments on ‘existence and uniqueness of GPS solutions’ by Abeland, J.S., Chaffee, J.W. IEEE Trans. Aerosp. Electron. Syst. 28(4), 1163 (1992)

    Google Scholar 

  21. Phatak, M., Chansarkar, M., Kohli, S.: Position fix from three GPS satellites and altitude: a direct method. IEEE Trans. Aerosp. Electron. Syst. 35(1), 350–354 (1999)

    Article  Google Scholar 

  22. Hoshen, J.: On the Apollonius solutions to the GPS equations. In: AFRICON 1999, 28 September–1 October 1999, vol. 1, pp. 99–102. IEEE (1999)

    Google Scholar 

  23. Leva, J.L.: An alternative closed-form solution to the GPS pseudorange equations. IEEE Trans. Aerosp. Electron. Syst. 32(4), 1430–1439 (1996)

    Article  Google Scholar 

  24. Chaffee, J., Abel, J.: On the exact solutions of pseudorange equations. IEEE Trans. Aerosp. Electron. Syst. 30(4), 1021–1030 (1994)

    Article  Google Scholar 

  25. Hassibi, B., Vikalo, H.: On the expected complexity of integer least-squares problems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1497–1500 (2002)

    Google Scholar 

  26. Hassibi, A., Boyd, S.: Integer parameter estimation in linear models with applications to GPS. IEEE Trans. Signal Process. 46(11), 2938–2952 (1998)

    Article  MathSciNet  Google Scholar 

  27. Abel, J.S.: A divide and conquer approach to least-squares estimation with application to range-difference-based localization. In: International Conference on Acoustics, Speech, and Signal Processing, 23–26 May 1989, vol. 4, pp. 2144–2147 (1989)

    Google Scholar 

  28. Peng, H.M., et al.: Maximum-likelihood-based filtering for attitude determination via GPS carrier phase. In: IEEE Position Location and Navigation Symposium, 13–16 March 2000, pp. 480–487 (2000)

    Google Scholar 

  29. Hassibi, B., Vikalo, H.: On the expected complexity of sphere decoding. In: Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 4–7 November 2001, vol. 2, pp. 1051–1055 (2001)

    Google Scholar 

  30. Chaffee, J.W., Abel, J.S.: The GPS Filtering Problem. In: IEEE PLANS 1992 Position Location and Navigation Symposium, Record 500 Years After Columbus—Navigation Challenges of Tomorrow, 23–27 March 1992, pp. 12–20 (1992)

    Google Scholar 

  31. Ponomaryov, V.I., et al.: Increasing the accuracy of differential global positioning system by means of use the Kalman filtering technique. In: Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, 4–8 December 2000, vol. 2, pp. 637–642 (2000)

    Google Scholar 

  32. Mao, X., Wada, M., Hashimoto, H.: Investigation on nonlinear filtering algorithms for GPS. In: IEEE Intelligent Vehicle Symposium, 17–21 June 2002, vol. 1, pp. 64–70 (2002)

    Google Scholar 

  33. Mao, X., Wada, M., Hashimoto, H.: Nonlinear filtering algorithms for GPS using pseudorange and Doppler shift measurements. In: Proceedings of the 5th IEEE International Conference on Intelligent Transportation Systems, Singapore, pp. 914–919 (2002)

    Google Scholar 

  34. Wu, S.C., Melbourne, W.G.: An optimal GPS data processing technique for precise positioning. IEEE Trans. Geosci. Remote Sens. 31(1), 146–152 (1993)

    Article  Google Scholar 

  35. http://www.mountainsafety.co.uk/How-The-GPS-System-Works.aspx. Accessed May 2020

  36. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: GPS: Theory and Practice. Springer, Vienna (1997)

    Google Scholar 

  37. Logsdon, T.: The NAVSTAR Global Positioning System, pp. 1–90. Van Nostrand Reinhold, New York (1992)

    Book  Google Scholar 

  38. Altamimi, Z., Sillard, P., Boucher, C.: ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res. 107(B10), 2214 (2002)

    Article  Google Scholar 

  39. McCarthy, D. (ed.): IERS Conventions, IERS Technical Note No. 21, U.S. Naval Observatory, July 1996. http://www.maia.usno.navy.mil/conventions.html

  40. Swift, E.R.: Improved WGS 84 coordinates for the DMA and air force GPS tracking sites. In: Proceedings of ION GPS-94, Salt Lake City, UT, September 1994

    Google Scholar 

  41. Cunningham, J., Curtis, V.L.: WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations, NSWCDD/TR-96/201, November 1996

    Google Scholar 

  42. Malys, S., Slater, J.A.: Maintenance and enhancement of the world geodetic system 1984. In: Proceedings of ION GPS-94, Salt Lake City, UT, September 1994

    Google Scholar 

  43. Merrigan, M.J., et al.: A refinement to the world geodetic system 1984 reference frame. In: Proceedings of ION GPS-2002, The Institute of Navigation, Portland, OR, September 2002

    Google Scholar 

  44. True, S.A.: Planning the future of the world geodetic system 1984. In: Proceedings of the Position, Location and Navigation Symposium, Monterey, CA, 26–29 April 2004 (2004)

    Google Scholar 

  45. Conventions on International Civil Aviation, Annex 15: Aeronautical Information Services, International Civil Aviation Organization, Montreal, ICAO (2003)

    Google Scholar 

  46. World Geodetic System – 1984 (WGS-84) Manual, Doc. 9674, 2nd ed., International Civil Aviation Organization (2002)

    Google Scholar 

  47. Newton, I.: Newton’s Principia: The Mathematical Principles of Natural Philosophy. Daniel Adee, New York (1846)

    Google Scholar 

  48. Jovanović, A.M., Simonović, A.M., Zorić, N.D., Lukić, N.S., Stupar, S.N., Ilić, S.S.: Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator. Smart Mater. Struct. 22(11), 115038 (2013)

    Article  Google Scholar 

  49. Zorić, N.D., Simonović, A.M., Mitrović, Z.S., Stupar, S.N., Obradović, A.M., Lukić, N.S.: Free vibration control of smart composite beams using particle swarm optimized self-tuning fuzzy logic controller. J. Sound Vib. 333(21), 5244–5268 (2014)

    Article  Google Scholar 

  50. Tomović, A., Šalinić, S., Obradović, A., Grbović, A., Milovančević, M.: Closed-form solution for the free axial-bending vibration problem of structures composed of rigid bodies and elastic beam segments. Appl. Math. Model. 77(2), 1148–1167 (2020)

    Article  MathSciNet  Google Scholar 

  51. Shukla, K.S., Talpin, J.: Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, p. 62. Springer, Heidelberg (2010). ISBN 978-1-4419-6400-7

    Google Scholar 

  52. Titterton, H.D., Weston, L.J.: Strapdown Inertial Navigation Technology, 2nd edn. The Institution of Electrical Engineers (2004)

    Google Scholar 

  53. Grovess, P.D.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation System (2008)

    Google Scholar 

  54. Walter, E., Pronzato, L.: Identification of Parametric Models from Experimental Data. Springer, London (1997)

    MATH  Google Scholar 

  55. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960). https://doi.org/10.1115/1.3662552

  56. Bolstad, W.M.: Introduction to Bayesian Statistics, 2nd edn. Wiley, Hoboken (2007). ISBN 0-471-27020-2

    Book  Google Scholar 

  57. Milić, T., Ivanović, B.: Kalmanov filter i primene u finansijama, Vremenske serije i primene u finansijama, Matematički fakultet, Univerzitet u Beogradu (2017)

    Google Scholar 

  58. Zouaghi, L., Alexopolous, A., Koslowski, M., Kandil, A., Badreddin, E.: An integrated distributed monitoring for mission-based systems: on the example of an autonomous un manned helicopter. In: 6th IEEE International Conference on Intelligent Systems, pp. 415–420, September 2012

    Google Scholar 

  59. Kortunov, V.I., Dybska, I.Y., Proskura, G.A., Kravchuk, A.S.: Integrated mini INS based on MEMS sensors for UAV control. IEEE Aerosp. Electron. Syst. Mag. 24(1), 41–43 (2009)

    Article  Google Scholar 

  60. Johnson, N., Tang, W., Howell, G.: Terrain aided navigation using maximum a posteriori estimation. In: IEEE Position Location and Navigation Symposium (1990)

    Google Scholar 

  61. Metzger, J., Wendel, J., Trommer, G.F.: Hybrid terrain referenced navigation system using a Bank of Kalman filters and a comparison technique. In: AIAA, Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, August 2004

    Google Scholar 

  62. Riedel, F.W., Hall, S.M., Barton, J.D., Christ, J.P., Funk, B.K., Milnes, T.D., Neperud, P.E., Star, D.R.: Guidance and navigation in the global engagement department. Johns Hopkins APL Tech. Digest 29(2), 118–132 (2010)

    Google Scholar 

  63. Titterton, D.H., Weston, J.L.: Strapdown Inertial Navigation Technology, 2nd edn. The Institution of Electrical Engineers (2004)

    Google Scholar 

  64. Perić, B., Simonović, A., Ivanov, T., Stupar, S., Vorkapić, M., Peković, O., Svorcan, J.: Design and testing characteristics of thin stainless steel diaphragms. Procedia Struct. Integrity 13, 2196–2201 (2018)

    Article  Google Scholar 

  65. Siouris, G.M.: Missile Guidance and Control Systems. Springer, New York (2004)

    Google Scholar 

  66. Mobley, M.D., Brown, J.I.: Impact of terrain correlation elevation reference data on Boeing’s air launched cruise missile. Institute of navigation National Meeting, Dayton, Ohio, pp. 108–112, March 1980

    Google Scholar 

  67. Mobley, M.D.: Air launched cruise missile (ALCM) navigation system development integration test, pp. 1248–1254 (1978)

    Google Scholar 

  68. https://fas.org/man/dod-101/sys/smart/bgm-109.htm. Accessed May 2020

  69. https://slideplayer.com/slide/10587447/. Accessed May 2020

  70. Irani, G.B., Christ, J.P.: Image processing for Tomahawk scene matching. Johns Hopkins APL Tech. Digest 15(3), 250–264 (1994)

    Google Scholar 

  71. Hatch, R.R., Luber, J.L., Walker, J.H.: Fifty years of strike warfare research at the applied physics laboratory. Johns Hopkins APL Tech. Digest 13(I), 1–8 (1992)

    Google Scholar 

  72. Mostafavi, H., Smith, F.W.: Image correlation with geometric distortion part I: acquisition performance. IEEE Trans. Aerosp. Electron. Syst. AES 14(3), 487–493 (1978)

    Google Scholar 

  73. Popović, V.M., Vasić, B.M., Lazović, T.M., Grbović, A.M.: Application of new decision making model based on modified cost-benefit analysis - a case study: Belgrade Tramway transit. Asia-Pacific J. Oper. Res. 29(06), 1250034 (2012)

    Google Scholar 

  74. Huanga, L., Songa, J., Zhanga, C., Caib, G.: Observable modes and absolute navigation capability for landmark-based IMU/Vision Navigation System of UAV. Optik 202, 163725 (2019)

    Google Scholar 

  75. Zhang, G., Hsu, L.-T.: Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system. Aerosp. Sci. Technol. 80 368–380 (2018)

    Google Scholar 

  76. Vetrella, A.R., Fasano, G., Accardo, D.: Attitude estimation for cooperating UAVs based on tight integration of GNSS and vision measurements. Aerosp. Sci. Technol. 84, 966–970 (2019)

    Article  Google Scholar 

  77. Torresa, V.A.M.F., Jaimesa, B.R.A., Ribeiroa, E.S., Bragaa, M.T., Shiguemor-ic, E.H., Velhod, H.F.C., Torresa, L.C.B., Bragaa, A.P.: Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs. Eng. Appl. Artif. Intell. 87, 103227 (2020)

    Article  Google Scholar 

  78. Song, Z., Zhang, J., Zhu, W., Xi, X.: The vector matching method in geomagnetic aiding navigation. Sensors 16(7), 1120 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan M. Raković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raković, D.M., Simonović, A., Grbović, A.M. (2021). UAV Positioning and Navigation - Review. In: Mitrovic, N., Mladenovic, G., Mitrovic, A. (eds) Experimental and Computational Investigations in Engineering. CNNTech 2020. Lecture Notes in Networks and Systems, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-030-58362-0_14

Download citation

Publish with us

Policies and ethics