Skip to main content

The Hybrid EMD-SARIMA Model for Air Quality Index Prediction, Case of Canton Sarajevo

  • Chapter
  • First Online:
Advanced Technologies, Systems, and Applications V (IAT 2020)

Abstract

The aim of this paper is to calculate the Air Quality Index (AQI) for each pollutant during a single year for Canton Sarajevo. After obtaining the Air Quality Index for all pollutants during an observed year, the calculation of the total Air Quality Index is given. Based on the collected hourly measured values of pollution concentrations for the period from 2014 to 2018 using the hybrid EMD-SARIMA model, the values of the Air Quality Index for 2019 are forecasted. After obtaining the prediction results for the model, four different measures were taken to identify the performance of the model. The Mean Absolute Percentage Error MAPE of 6.66 (%) shows highly accurate model performance forecasts. The model is created and performance of the proposed model has been tested in the MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Information on the state of air quality in the Sarajevo Canton for 2018. Ministry of Physical Planning, Construction and Environmental Protection. mpz@mpz.ks.gov.ba

    Google Scholar 

  2. Air quality in Sarajevo Canton—website of the Ministry of Physical Planning. Construction and environmental protection KS. www.kvalitetzraka.ba

  3. Riddle, A., Carruthers, D., Sharpe, A., McHugh, C., Stocker, J.: Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos. Environ. 38, 1029–1038 (2004)

    Article  Google Scholar 

  4. Rahman, N.H.A., Lee, M.H., Suhartono, Latif, M.T. Artificial neural networks and fuzzy time series forecasting: an application to air quality. Qual. Quant. 49, 2633–2647 (2015)

    Google Scholar 

  5. Grivas, G., Chaloulakou, A.: Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens. Greece. Atmos. Environ. 40, 1216–1229 (2006)

    Article  Google Scholar 

  6. Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A.: Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 5, 696–708 (2014)

    Article  Google Scholar 

  7. Bai, Y., Li, Y., Wang, X., Xie, J., Li, C.: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7, 557–566 (2016)

    Article  Google Scholar 

  8. Mishra, D., Goyal, P.: NO2 forecasting models Agra. Atmos. Pollut. Res. 6, 99–106 (2015)

    Article  Google Scholar 

  9. Kurt, A., Oktay, A.B.: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 37, 7986–7992 (2010)

    Article  Google Scholar 

  10. Song, Y., Qin, S., Qu, J., Liu, F.: The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region. Atmos. Environ. 118, 58–69 (2015)

    Article  Google Scholar 

  11. Silibello, C., D’Allura, A., Finardi, S., Bolignano, A., Sozzi, R.: Application of bias adjustment techniques to improve air quality forecasts. Atmos. Pollut. Res. 6, 928–938 (2015)

    Article  Google Scholar 

  12. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Upper Saddle River (1992)

    MATH  Google Scholar 

  13. Qin, S., Liu, F., Wang, J., Sun, B.: Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models. Atmos. Environ. 98, 665–675 (2014)

    Article  Google Scholar 

  14. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  15. Cortina-Januchs, M.G., Quintanilla-Dominguez, J., Vega-Corona, A., Andina, D.: Development of a model for forecasting of PM10 concentrations in Salamanca. Mexico. Atmos. Pollut. Res. 6, 626–634 (2015)

    Article  Google Scholar 

  16. Technical Assistance Document for the Reporting of Daily Air Quality—the Air Quality Index; U.S. Environmental Protection Agency (2016)

    Google Scholar 

  17. https://www.fhmzbih.gov.ba/latinica/ZRAK/AQI-metodologija.php

  18. Nai, W., Liu, Lu., Wang, S., Dong, D.: An EMD-SARIMA-based modeling approach for air traffic forecasting. Algorithms 10, 139 (2017). https://doi.org/10.3390/a10040139

    Article  MATH  Google Scholar 

  19. Dedović, M.M., Avdaković, S.: A new approach for df/dt and active power imbalance in power system estimation using Huang’s empirical mode decomposition. Int. J. Electr. Power Energy Syst. 110, 62–71 (2019)

    Google Scholar 

  20. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London A 454(1971), 903–995 (1998)

    Google Scholar 

  21. https://aqicn.org/

  22. Bai, L., Wang, J., Ma, X., Lu, H.: Air Pollution forecasts: an overview. Int. J. Environ. Res. Publ. Health 15, 780 (2018)

    Article  Google Scholar 

  23. Bošnjak, R. (2019). Forecast of time series using Scikit-learn software libraries. Graduation Thesis. Retrieved from https://urn.nsk.hr/urn:nbn:hr:168:765650

  24. Baggio, R., Klobas, J.: Quantitative methods in tourism. Channel View Publication, Bristol-Buffalo-Toronto (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muftic Dedovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dedovic, M.M., Avdaković, S., Mujezinović, A., Dautbasic, N. (2021). The Hybrid EMD-SARIMA Model for Air Quality Index Prediction, Case of Canton Sarajevo. In: Avdaković, S., Volić, I., Mujčić, A., Uzunović, T., Mujezinović, A. (eds) Advanced Technologies, Systems, and Applications V. IAT 2020. Lecture Notes in Networks and Systems, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-54765-3_9

Download citation

Publish with us

Policies and ethics