Skip to main content

Analysis of Contact Mechanics Problems of Pipes Using a Finite-Volume Method

  • Chapter
  • First Online:
Advanced Technologies, Systems, and Applications V (IAT 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 142))

  • 395 Accesses

Abstract

A finite-volume Method (FVM) is tested for application to contact problems of linearly elastic bodies, aiming at analysis of pipes exposed to local stress and strain increase triggered by their contact with supports or foundation. The implemented numerical algorithm is verified by comparison of the numerical results with the analytical ones in case of a pressurized thick-walled pipe, as well as in a Hertzian contact of a solid cylinder and a rigid flat foundation. The algorithm is demonstrated in case of a thin-walled pipe lying on a rigid foundation, and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz, H.: Über die Berührung fester elastischer Körper. Z. Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  2. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill (1951)

    Google Scholar 

  3. K.L. Johnson: Contact Mechanics. Cambridge University Press (1985)

    Google Scholar 

  4. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  5. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  6. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Article  Google Scholar 

  7. Demirdžić, I., Muzaferija, S.: Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125(1–4), 235–255 (1995)

    Article  Google Scholar 

  8. Demirdžić, I., Martinović, D.: Finite volume method for thermo-elasto-plastic stress analysis. Comput. Methods Appl. Mech. Eng. 109(3–4), 331–349 (1993)

    Article  Google Scholar 

  9. Cardiff, P., Demirdžić, I.: Thirty years of the finite volume method for solid mechanics. arXiv:1810.02105 [math.NA] (2018)

  10. Torlak, M.: Application of finite volume method to problems of contact mechanics. Diploma-thesis, University of Sarajevo, Mechanical Engineering Faculty (1998)

    Google Scholar 

  11. Jasak, H., Weller, H.G.: Finite volume methodology for contact problems of linear elastic solids. In: Proceedings of 3rd Congress of Croatian Society of Mechanics, pp. 253–260, Dubrovnik, Croatia (2000)

    Google Scholar 

  12. Taylor, G., Breiguine, V., Bailey, C., Cross, M.: An augmented Lagrangian contact algorithm employing a vertex-based finite volume method. In: Proceedings of the 8th Annual Conference of the Association for Computational Mechanics in Engineering, ACME 2000, London, UK (2000)

    Google Scholar 

  13. Cardiff, P., Ivanković, A., FitzPatrick, D., Flavin, R., Karač, A.: Development of a finite volume methodology for linear elastic contact problems. In: Proceedings of the IWCMM, Limerick, Ireland (2011)

    Google Scholar 

  14. Cardiff, P., Karač, A., Ivanković, A.: Development of a finite volume contact solver based on the penalty method. Comput. Mater. Sci. 64, 283–284 (2012)

    Article  Google Scholar 

  15. Cardiff, P., Karač, A., FitzPatrick, D., Flavin, R., Ivanković, A.: Development of a hip joint model for finite volume simulations. J. Biomech. Eng. 136, 1–8 (2014). https://doi.org/10.1115/1.4025776

    Article  Google Scholar 

  16. Berge, R.L., Berre, I., Keilegavlen, E., Nordbotten, J.M., Wohlmuth, B.: Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. Int. J. Numer. Methods Eng. 12, 644–663 (2020)

    Article  MathSciNet  Google Scholar 

  17. Wheel, M.A.: A finite volume method for analyzing the bending deformation of thick and thin plates. Comput. Methods Appl. Mech. Eng. 147, 199–208 (1997)

    Article  Google Scholar 

  18. Torlak, M.: A finite-volume method for coupled numerical analysis of incompressible fluid flow and linear deformation of elastic structures. PhD thesis, TU Hamburg-Harburg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muris Torlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torlak, M., Kljuno, E. (2021). Analysis of Contact Mechanics Problems of Pipes Using a Finite-Volume Method. In: Avdaković, S., Volić, I., Mujčić, A., Uzunović, T., Mujezinović, A. (eds) Advanced Technologies, Systems, and Applications V. IAT 2020. Lecture Notes in Networks and Systems, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-54765-3_15

Download citation

Publish with us

Policies and ethics