Skip to main content

Saving Data Analysis: Epistemic Friction and Progress in Neuroimaging Research

  • Chapter
  • First Online:
Neural Mechanisms

Part of the book series: Studies in Brain and Mind ((SIBM,volume 17))

  • 775 Accesses

Abstract

Data must be manipulated for their evidential import to be assessed. However, data analysis is regarded as a source of inferential errors by scientists and critics of neuroscience alike. In this chapter I argue that of data analysis is epistemically challenged in part because data are causally separated from the events that they are intended to provide evidence for claims about. Experimental manipulations place researchers in epistemically advantageous positions by making contact with the objects and phenomena of interest. Data manipulations, on the other hand, are applied to material objects that are not in causal contact with the events they are used to learn about. I then propose that some of the inferential liabilities that go along with data manipulation are partly overcome through the occurrence of epistemic friction. I consider two forthcoming contributions to network neuroscience to illustrate the benefits, and risks, of the data analyst’s reliance on epistemic friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At the time this chapter was written the cases examined were pre-prints. Pre-print material was chosen because I had the ability to observe as these contributions were conceived, developed, and written up. It was through observing and collaborating on these projects that the philosophical perspectives presented in this chapter were developed.

  2. 2.

    Those familiar with neuroimaging research may notice that experiments, and so experimental manipulations, are often designed with the data manipulations that will be carried out downstream in mind. In this way, experimental manipulations are methodologically beholden to data manipulations and so it may seem odd to classify one as epistemically inferior to the other. It is important here to note that the use of shared and otherwise open access data has begun to decouple experimental design from analysis design. As it becomes more common for researchers to analyze and interpret data that they did not produce it is important to consider the data and experimental manipulations as disentangled processes. I thank a reviewer for pressing this point.

  3. 3.

    The remainder of this section is partially autobiographical in content. The information reported here was obtained through conversations and collaborations with the scientist discussed.

  4. 4.

    I owe thanks to an anonymous reviewer for raising this challenge.

References

  • Aktunc, M. E. (2014). Severe tests in neuroimaging: What we can learn and how we can learn it. Philosophy of Science, 81, 961–973.

    Article  Google Scholar 

  • Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34, 51–61.

    Article  Google Scholar 

  • Bechtel, W. P., & Stufflebeam, R. S. (1997). PET: Exploring the myth and the method. Philosophy of Science, 64, S95–S106.

    Article  Google Scholar 

  • Betzel, R. F., He, Y., Rumschlag, J., & Sporns, O. (2015). Functional brain modules reconfigure at multiple scales across the human lifespan. ArXiv, (1510.08045v1). Accessed July 2019.

    Google Scholar 

  • Bickle, J. (2016). Revolutions in neuroscience: Tool development. Frontiers in Systems Neuroscience, 10, 1–13.

    Article  Google Scholar 

  • Bissett, P. G., & Logan, G. D. (2011). Balancing cognitive demands: Control adjustments in the stop-signal paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 392–404.

    Google Scholar 

  • Boem, F., & Ratti, E. (2016). Towards a notion of intervention in big-data biology and molecular medicine. In Philosophy of molecular medicine: Foundational issues in research and practice (pp. 147–164). New York: Routledge, Taylor & Francis Group.

    Google Scholar 

  • Borgerson, K. (2011). Ammending and defending critical contextual empiricism. European Journal for Philosophy of Science, 1, 435–449.

    Article  Google Scholar 

  • Bowring, A., Maumet, C., & Nichols, T. (2019). Exploring the impact of analysis software on task fMRI results. Human Brain Mapping, 40, 3362–3384. https://doi.org/10.1002/hbm.24603.

    Article  Google Scholar 

  • Buckner, R. (2003). The hemodynamic inverse problem: Making inferences about neural activity from measured MRI signals. PNAS, 100, 2177–2179. https://doi.org/10.1073/pnas.0630492100.

    Article  Google Scholar 

  • Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of fMRI experiments. Frontiers in Neuroscience, 6, 149.

    Article  Google Scholar 

  • Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. NeuroImage, 72, 227–236.

    Article  Google Scholar 

  • Chirimuuta, M. (2013). Extending, changing, and explaining the brain. Biology and Philosophy, 28, 612–638.

    Article  Google Scholar 

  • Crandall, C. S., & Sherman, J. W. (2016). On the scientific superiority of conceptual replications for scientific progress. Journal of Experimental Social Psychology, 66, 93–99.

    Article  Google Scholar 

  • Currie, A. (2018). Rock, bone, and ruin: An optimist’s guide to the historical sciences. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Currie, A., & Levy, A. (2019). Why experiments matter. Inquiry, 62(9–10), 1066–1090.

    Article  Google Scholar 

  • Datteri, E. (2009). Simulation experiments in bionics: A regulative methodological perspective. Biology and Philosophy, 24, 301–324.

    Article  Google Scholar 

  • Feest, U. (2017). Phenomena and objects of research in the cognitive and behavioral sciences. Philosophy of Science, 84, 1165–1176.

    Article  Google Scholar 

  • Feest, U. (forthcoming). Why replication is overrated. Philosohphy of Science. https://doi.org/10.1086/705451.

  • Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.

    Article  Google Scholar 

  • Fukushima, M., Betzel, R. F., He, Y., & van den Heuvel, M. P. (2018). Structure – Function relationships during segregated and integrated network states of human brain functional connectivity. Brain Structure and Function, 223, 1091–1106.

    Article  Google Scholar 

  • Guala, F. (2002). Models, simulations, and experiments. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 59–74). New York: Kluwer.

    Chapter  Google Scholar 

  • Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895–900. https://doi.org/10.1038/nature03288.

    Article  Google Scholar 

  • Hacking, I. (1981). Do we see through a microscope? Pacific Philosophical Quarterly, 62, 305–322.

    Article  Google Scholar 

  • Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62, 852–855.

    Article  Google Scholar 

  • Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519, 97–125.

    Article  Google Scholar 

  • Horikawa, T., & Kamitani, Y. (2017). Generic decoding of seen and imaged objects using hierarchical visual features. Nature Communications, 8, 15037.

    Article  Google Scholar 

  • Horowitz, B. (2003). The elusive concept of brain connectivity. NeuroImage, 19, 466–470.

    Article  Google Scholar 

  • Huettel, S., Song, A., & McCarthy, G. (2008). Functional magnetic resonance imaging (2nd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Israel-Jost, V. (2016). Computer image processing: An epistemological aid in scientific investigation. Perspectives on Science, 24, 669–695.

    Article  Google Scholar 

  • Klein, C. (2010). Images are not the evidence in neuroimaging. British Journal for the Philosophy of Science, 61, 265–278.

    Article  Google Scholar 

  • Leonelli, S. (2016). Data-centric biology: A philosophical study. University of Chicago Press.

    Google Scholar 

  • Lindquist, M. A., Meng Loh, J., Atlas, L. Y., & Wager, T. D. (2009). Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage, 45, S187–S198. https://doi.org/10.1016/j.neuroimage.2008.10.065.

    Article  Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.

    Article  Google Scholar 

  • Longino, H. (2012). Studying human behavior: How scientists investigate aggression and sexuality. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lurie, L., Kessler, D., Bassett, D., Betzel, R., Breakspear, M., Keilholz, S., Kucyi, A., Liegeois, R., Lindquist, M., McInstosh, A., Poldrack, R., Shine, J. M., Thompson, W., Beilczyk, N., Douw, L., Kraft, D., Miller, R., Muthuraman, M., Pasquini, L., Razi, A., Vidaurre, D., Xie, H., & V. Calhoun. Preprint. On the nature of resting fMRI and time-varying functional connectivity. PsyArXiv Preprints. https://wwww.doi.org/10.31234/osf.io/xtzre. Accessed July 2019.

  • Martin, C. B., Sullivan, J., Wright, J., & Köhler, S. (2018). How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes. NeuroImage, 166, 425–436.

    Article  Google Scholar 

  • Mayo, D. (1996). Error and the growth of experimental knowledge. Chicago: Univeristy of Chicago Press.

    Book  Google Scholar 

  • McAllister, J. (1997). Phenomena and Patterns in data sets. Erkenntnis, 47, 217–228.

    Article  Google Scholar 

  • Medina, J. (2012). The epistemology of resistance: Gender and racial oppression, epistemic injustice, and resistant imaginations (Studies in Feminist Philosophy). New York: Oxford University Press.

    Google Scholar 

  • Meunier, D., Lambiotte, R., Fornito, A., Ersche, K. D., & Bullmore, E. T. (2009). Hierarchical modularity in human brain functional networks. Frontiers of Neuroinformatics. https://doi.org/10.3389/neuro.11.037.2009.

  • Morgan, M. S. (2005). Experiments versus models: New phenomena, inference and surprise. Journal of Economic Methodology, 12, 317–329.

    Article  Google Scholar 

  • Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328, 876–878.

    Article  Google Scholar 

  • Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage, 154, 169–173.

    Article  Google Scholar 

  • Parke, E. C. (2014). Experiments, simulations, and epistemic privilege. Philosophy of Science, 81, 516–536. https://doi.org/10.1086/677956.

    Article  Google Scholar 

  • Pedersen, M., Omidvarnia, A., Jackson, G. D., Zalesky, A., & Walz, J. M. (2017). Spontaneous brain network activity: Analysis of its temporal complexity. Network Neuroscience, 1, 100–115.

    Article  Google Scholar 

  • Pessoa, L. (2014). Understanding brain networks and brain organization. Physics of Life Reviews, 11, 400–435.

    Article  Google Scholar 

  • Poldrack, R., & Gorgolewski, C. (2015). OpenfMRI: Open task sharing of fMRI data. NeuroImage, 144, 259–261. https://doi.org/10.1016/J.NEUROIMAGE.2015.05.073.

    Article  Google Scholar 

  • Poldrack, R. A., Mumford, J., & Nichols, T. (2011). Handbook of functional MRI data analysis. New York: Cambridge University Press.

    Book  Google Scholar 

  • Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 798–813. https://doi.org/10.1016/j.neuron.2013.07.035.

    Article  Google Scholar 

  • Ritchie, J. B., Kaplan, D. M., & Klein, C. (2019). Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience. British Journal for the Philosophy of Science, 70, 581–607.

    Article  Google Scholar 

  • Roskies, A. (2010a). Neuroimaging and inferential distance: The perils of pictures. In M. Bunzl & S. J. Hanson (Eds.), Foundational issues in human brain mapping (pp. 195–216). Cambridge, MA: The MIT Press.

    Chapter  Google Scholar 

  • Roskies, A. (2010b). Saving subtraction: A reply to Van Orden and Paap. The British Journal for the Philosophy of Science, 61, 635–665.

    Article  Google Scholar 

  • Roush, S. (2018). The epistemic superiority of experiment to simulation. Synthese, 195, 4883–4906.

    Article  Google Scholar 

  • Schölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. (2010). Neural basis of global resting-state fMRI activity. PNAS, 107, 10238–10243. https://doi.org/10.1073/pnas.0913110107.

    Article  Google Scholar 

  • Sher, G. (2010). Epistemic friction: Reflections on knowledge, truth, and logic. Erkenntnis, 72, 151–176.

    Article  Google Scholar 

  • Shine, M., Bissett, P., Bell, P. T., Koyejo, O., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated networks states during cognitive task performance. Neuron, 92, 544–554.

    Article  Google Scholar 

  • Sullivan, J. (2018). Optogenetics, pluralism, and progress. Philosophy of Science, 85, 1090–1101.

    Article  Google Scholar 

  • Taylor P. A., Chen G. C., Glen D. R., Rajendra J. K., Reynolds R. C., & Cox, R. W. (2018). FMRI processing with AFNI: Some comments and corrections on “Exploring the Impact of Analysis Software on Task fMRI Results”. bioRxiv. https://doi.org/10.1101/308643. Accessed 12 Apr 2019.

  • Thompson, W., Branefors, P., & Fransson, P. (2017). From static to temporal network theory: Applications to functional brain connectivity. Network Neuroscience, 1, 69–99.

    Article  Google Scholar 

  • Thompson, W., Wright, J., Shine, J. M., & Poldrack, R. A. Pre-Print. (2019). The identification of temporal communities through trajectory clustering correlates with single-trial behavioral fluctuations in neuroimaging data. bioRxiv. https://doi.org/10.1101/617027. Accessed 25 Apr 2019.

  • Thompson, W., Kastrati, G., Finc, K., Wright, J., Shine, J. M., & Polrack, R. A. (2020). Time-varying nodal measures with temporal community structure: A cautionary note to avoid misquantification. Human Brain Mapping. https://doi.org/10.1002/hbm.24950.

  • Uddin, L. Q., Mooshagian, E., Zaidel, E., Scheres, A., Margulies, D. S., Kelly, A. C., Shehzad, Z., Adelstein, J. S., Castellanos, F. X., Biswal, B. B., & Milham, M. P. (2008). Residual functional connectivity in the split-brain revealed with resting-state fMRI. Neuroreport, 19, 703–709.

    Article  Google Scholar 

  • Uttal, W. (2001). The new phrenology. Cambridge, MA: The MIT Press.

    Google Scholar 

  • van den Heuval, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review of resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519–534.

    Article  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.

    Article  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044.

    Article  Google Scholar 

  • Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., Della Penna, S., Feinberg, D., Glasser, M. F., Harel, N., Heath, A. C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., Peterson, S. E., Schlagger, B. L., Smith, S. M., Snyder, A. Z., Xu, J., Yacoub, E., & WU-Minn HCP Consortium. (2012). The Human Connectome project: A data acquisition perspective. NeuroImage, 62, 2222–2231. https://doi.org/10.1016/j.neuroimage.2012.02.018.

    Article  Google Scholar 

  • Van Orden, G. C., & Paap, K. R. (1997). Functional neuroimages fail to discover pieces of mind in the parts of the brain. Philosophy of Science, 64, S85–S94.

    Article  Google Scholar 

  • Woodward, J. (2000). Data, phenomena and reliability. Philosophy of Science, 67, 163–S179.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.

    Google Scholar 

  • Wright, J. W. (2017). The analysis of data and the evidential scope of neuroimaging results. British Journal for the Philosophy of Science, 69, 1179–1203. https://doi.org/10.1093/bjps/axx012.

    Article  Google Scholar 

  • Wright, J. (2018). Seeing patterns in neuroimaging data. In C. Ambrosio & W. MacLehose (Eds.), Imagining the brain: Episodes in the history of brain research (pp. 299–323). Cambridge, MA: Academic.

    Chapter  Google Scholar 

Download references

Acknowledgements

I owe thanks to William Hedley Thompson for providing substantive comments on several drafts of this chapter, and the Poldrack lab at Stanford for the opportunity to be a member of their lab, as both an observer and collaborator. Adrian Currie, the editors of this book, and an anonymous reviewer provided incredibly helpful comments on an early draft. The National Science Foundation’s STS program, and Social Sciences and Humanities Research Council of Canada provided financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessey Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, J. (2021). Saving Data Analysis: Epistemic Friction and Progress in Neuroimaging Research. In: Calzavarini, F., Viola, M. (eds) Neural Mechanisms. Studies in Brain and Mind, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-54092-0_8

Download citation

Publish with us

Policies and ethics