Skip to main content

Efficient Pore Network Extraction Method Based on the Distance Transform

  • Conference paper
  • First Online:
Artificial Intelligence and Industrial Applications (A2IA 2020)

Abstract

Digital twins of materials allow to achieve accurate predictions that help creating novel and tailor-made materials with higher standards. In this paper, we are interested in the characterization of porous media. Our attention is drawn to develop a method to describe accurately the pore network microstructure of porous materials as presented in [7]. This work proposes an efficient algorithm based on the distance transform method [12] which is a widely used method in image processing. The followed approach suggests that a distance transform map, obtained from a microstructure image, passes through different steps. Starting from local maxima extraction and filtering operation, to end up with another distance transform with source propagation. We illustrate our algorithm with the well-known Pore Network Model of the literature [13], which supposes that the pore structure is either a network of connected cylinders or cylinders and spheres. Our approach is also applied on multi-scale Boolean random models modelling complex porous media microstructures [11]. The porous media morphological characteristics extracted could be used to simulate complex phenomena as the physisorption isotherms or other experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattad, P., Willson, C.S., Thompson, K.E.: Effect of network structure on characterization and flow modeling using x-ray micro-tomography images of granular and fibrous porous media. Transp. Porous Med. 90, 363 (2011)

    Article  Google Scholar 

  2. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  3. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  4. Vogel, H.J.: A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur. J. Soil Sci. 51(1), 99–105 (2000)

    Article  Google Scholar 

  5. Yang, F., Hingerl, F., Xiao, X., et al.: Extraction of pore-morphology and capillary pressure curves of porous media from synchrotron-based tomography data. Sci. Rep. 5, 10635 (2015)

    Article  Google Scholar 

  6. Pudney, C.: Distance-based skeletonization of 3D images. In: Proceedings of the 1996 IEEE TENCON Digital Signal Processing Applications, TENCON 1996, vol. 201, pp. 209–214 (1996)

    Google Scholar 

  7. Gostick, J.T.: Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E 96, 023307 (2017)

    Article  Google Scholar 

  8. Zeng, Y., Fan, C., Do, D.D., Nicholson, D.: Evaporation from an ink-bottle pore: mechanisms of adsorption and desorption. Ind. Eng. Chem. Res. 53(40), 15467–15474 (2014)

    Article  Google Scholar 

  9. Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016)

    Article  Google Scholar 

  10. Jeulin, D.: Morphology and effective properties of multi-scale random sets: a review. Comptes Rendus Mécanique 340(4–5), 219–229 (2012)

    Article  Google Scholar 

  11. Moreaud, M., Chaniot, J., Fournel, T., Becker, J.M., Sorbier, L.: Multi-scale stochastic morphological models for 3D complex microstructures. In: IEEE Conference on 17th Workshop on Information Optics (WIO), Quebec city, Canada (2018)

    Google Scholar 

  12. Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  13. Ledezma, G., Verstraete, J., Sorbier, L., Leinekugel-Le Cocq, D., Jolimatre, E., Jallut, C.: Computational characterization techniques applied to a pore network model by using a fast percolation algorithm (article under preparation, 2020)

    Google Scholar 

  14. Bailey, D.G.: An efficient Euclidean distance transform. In: Klette R., Žunić J. (eds.) Combinatorial Image Analysis, IWCIA 2004. LNCS, vol. 3322, pp. 394–408. Springer, Berlin (2004)

    Google Scholar 

  15. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Graph. Image Process. 27(3), 321–345 (1984)

    Article  Google Scholar 

  16. Shih, F.Y., Wu, Y.-T.: Fast Euclidean distance transformation in two scans using a \(3x3\) neighborhood. Comput. Vis. Image Underst. 93(2), 109–205 (2004)

    Article  Google Scholar 

  17. He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algorithm. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, ICIAR 2007. LNCS, vol. 4633, pp. 131–142. Springer, Berlin (2007)

    Google Scholar 

  18. Xu, D., Li, H.: Euclidean distance transform of digital images in arbitrary dimensions. In: Zhuang, Y., Yang, S.Q., Rui, Y., He, Q. (eds.) Advances in Multimedia Information Processing, PCM 2006. LNCS, vol. 4261, pp. 72–79. Springer, Berlin (2006)

    Google Scholar 

  19. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), Article 2 (2008)

    Google Scholar 

  20. Niblack, C.W., Gibbons, P.B., Capson, D.W.: Generating skeletons and centerlines from the distance transform. CVGIP Graph. Models Image Process. 54(5), 420–437 (1992)

    Article  Google Scholar 

  21. Lantuejoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recogn. 17(2), 177–187 (1984)

    Article  MathSciNet  Google Scholar 

  22. Wang, H., Jeulin, D., Willot, F., Sorbier, L., Moreaud, M.: Modelling of the microstructure of mesoporous alumina constrained by morphological simulation of nitrogen porosimetry. Colloids Surf., A 553, 378–396 (2018)

    Google Scholar 

  23. “plug im!” an open access and customizable software for signal and image processing (2020). https://www.plugim.fr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Hammoumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hammoumi, A., Moreaud, M., Jolimaitre, E., Chevalier, T., Novikov, A., Klotz, M. (2021). Efficient Pore Network Extraction Method Based on the Distance Transform. In: Masrour, T., El Hassani, I., Cherrafi, A. (eds) Artificial Intelligence and Industrial Applications. A2IA 2020. Lecture Notes in Networks and Systems, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-53970-2_1

Download citation

Publish with us

Policies and ethics