Skip to main content

Visible Light Communication for Automotive Market Weather Conditions Simulation

  • Conference paper
  • First Online:
Cross Reality and Data Science in Engineering (REV 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1231))

  • 1281 Accesses

Abstract

The goal of V2V Vehicle-to-Vehicle communication is to prevent accidents by allowing vehicles in transit to send position and speed data to one another over an ad hoc mesh network. Depending upon how the technology is implemented, the vehicle’s driver may simply receive a warning should there be a risk of an accident or the vehicle itself may take pre-emptive actions such as braking to slow down. V2V technology represents the next great advance in saving lives. This technology could move us from helping people survive crashes to helping them avoid crashes altogether—saving lives, saving money, and even saving fuel thanks to the widespread benefits it offers

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Islim, M.S., Haas, H.: Modulation Techniques for Li-Fi. ISSN. 1673-5188, 4 February 2016

    Google Scholar 

  2. U.S. Transportation Secretary Anthony Foxx. http://www.nhtsa.gov/About+NHTSA/Press+Releases/NHTSA-issues-advanced-notice-of-proposed-rulemaking-on-V2V-communications

  3. Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., Menouar, H.: Performance study of a V2V system using a measured headlamp beam pattern model. https://doi.org/10.1109/mvt.2015.2481561

  4. https://purelifi.com/lifi-products/

  5. Tsonev, D., Videv, S., Haas, H.: Light Fidelity (Li-Fi): Towards All-Optical Networking

    Google Scholar 

  6. Morgan, Y.L.: Notes on DSRC & WAVE standards suite: its architecture, design, and characteristics. IEEE Commun. Surveys Tut. 12(4), 504–518 (2010)

    Article  Google Scholar 

  7. Lee, S.J., Kwon, J.K., Jung, S.Y., Kwon, Y.H.: Simulation modeling of visible light communication channel for automotive applications. In: Proceedings of 15th International IEEE Conference Intelligent Transportation Systems, pp. 463–468 (2012)

    Google Scholar 

  8. Mesleh, R., Elgala, H., Haas, H.: On the performance of different OFDM based optical wireless communication systems. J. Opt. Commun. Netw. 3(8), 620–628 (2011)

    Article  Google Scholar 

  9. Kizilirmak, R.C., Uysal, M.: Relay-assisted OFDM transmission for indoor visible light communication. In: Proceedings IEEE International Black Sea Conference Communications Networking, pp. 11–15 (2014)

    Google Scholar 

  10. Akanegawa, M., Tanaka, Y., Nakagawa, M.: Basic study on traffic information system using LED traffic lights. IEEE Trans. Intell. Transport. Syst. 2(4), 197–203 (2001)

    Article  Google Scholar 

  11. Kitano, S., Haruyama, S., Nakagawa, M.: LED road illumination communications system. In: Proceedings IEEE 58th Vehicular Technology Conference Fall, vol. 5, pp. 3346–3350 (2003)

    Google Scholar 

  12. Liu, C., Sadeghi, B., Knightly, E.: Enabling vehicular visible light communication (V2LC) networks. In: Proceedings of 8th ACM International Workshop Vehicular Inter-Networking, pp. 41–50 (2011)

    Google Scholar 

  13. Lourenco, N., Terra, D., Kumar, N., Alves, L.N., Aguiar, R.L.: Visible light communication system for outdoor applications. In: Proceedings of 8th International Symposium Communication Systems, Networks Digital Signal Processing, pp. 1–6 (2012)

    Google Scholar 

  14. Yu, S.-H., Shih, O., Tsai, H.-M., Wisitpongphan, N., Roberts, R.: Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 51(12), 50–59 (2013)

    Article  Google Scholar 

  15. Takai, I., Harada, T., Andoh, M., Yasutomi, K., Kagawa, K., Kawahito, S.: Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver. IEEE Photon. J. 6(5), 1–14 (2014)

    Article  Google Scholar 

  16. Tomas, B., Tsai, H.-M., Boban, M.: Simulating vehicular visible light communication: physical radio and MAC modeling. In: Proceedings of IEEE Vehicular Networking Conference, pp. 222–225 (2014)

    Google Scholar 

  17. Luo, P., Ghassemlooy, Z., Minh, H.L., Tang, X., Tsai, H.-M.: Undersampled phase shift ON-OFF keying for camera communication. In: Proceedings of 6th International Conference Wireless Communications Signal Processing, pp. 1–6 (2014)

    Google Scholar 

  18. Martinez, F.J., et al.: Emergency services in future intelligent transportation systems based on vehicular communication networks. IEEE Intell. Transp. Syst. Mag. 2(2), 6–20 (2010)

    Article  Google Scholar 

  19. Meroth, A.M., et al.: Functional safety and development process capability for intelligent transportation systems. IEEE Intell. Transp. Syst. Mag. 7(4), 12–23 (2015)

    Article  Google Scholar 

  20. Karagiannis, O., et al.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surveys Tut. 13(4), 584–616 (2011)

    Article  Google Scholar 

  21. Zheng, K., et al.: Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun. Surveys Tut. 17(4), 2377–2396 (2015)

    Article  Google Scholar 

  22. Intelligent transport systems (ITS) usage in ITU Member States: Working Document toward a Preliminary Draft New Report ITU-R M. [ITS USAGE], Annex 32 to Document 5A/469-E, June 2017

    Google Scholar 

  23. Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., Menouar, H.: Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 10(4), 45–53 (2015)

    Article  Google Scholar 

  24. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surveys Tutor. 17(3), 1649–1678 (2015)

    Article  Google Scholar 

  25. Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, net-working, and sensing: a survey, potential and challenges. IEEE Commun. Surveys Tutor. 17(4), 2047–2077 (2015)

    Article  Google Scholar 

  26. Yu, S.H., et al.: Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 51(12), 50–59 (2013)

    Article  Google Scholar 

  27. Cailean, A.M., Dimian, M.: Current challenges for visible light communications usage in vehicle applications: a survey. IEEE Commun. Surveys Tutor. 19(4), 2681–2703 (2017)

    Article  Google Scholar 

  28. Cailean, A.M., Dimian, M.: Impact of IEEE 802.15. 7 standard onvisible light communications usage in automotive applications. IEEE Commun. Mag. (2017). https://doi.org/10.1109/mcom.2017.1600206cm

  29. Akanegawa, M., Tanaka, Y., Nakagawa, M.: Basic study on traffic information system using LED traffic lights. IEEE Trans. Intell. Transp. Syst. 2(4), 197–203 (2001)

    Article  Google Scholar 

  30. Kumar, N., Terra, D., Lourenco, N., Alves, L.N., Aguiar, R.L.: Visible light communication for intelligent transportation in road safety applications. In: Proceedings of IEEE International Conference Wireless Communications and Mobile Computing, pp. 1513–1518 (2011)

    Google Scholar 

  31. Viriyasitavat, W., et al.: Short paper: channel model for visible light communications using off-the-shelf scooter taillight. In: IEEE Vehicular Networking Conference (VNC), pp. 170–173 (2013)

    Google Scholar 

  32. Lee, S.J., Kwon, J.K., Jung, S.Y., Kwon, Y.H.: Evaluation of visible light communication channel delay profiles for automotive applications. EURASIP J. Wirel. Commun. Netw. 2012(370), 1–8 (2012)

    Google Scholar 

  33. Luo, P., et al.: Fundamental analysis of a car to car visible light communication system. In: 9th International Symposium Communication Systems, Networks & Digital Signal Processing (CSNDSP), pp. 1011–1016 (2014)

    Google Scholar 

  34. Luo, P., et al.: Performance analysis of a car-to-car visible light communication system. Appl. Opt. 54(7), 1696–1706 (2015)

    Article  Google Scholar 

  35. Kim, Y.H., Cahyadi, W.A., Chung, Y.H.: Experimental demonstration of LED-based vehicle to vehicle communication under atmospheric turbulence. In: IEEE International Conference Information and Communication Technology Convergence (ICTC), pp. 1143–1145 (2015)

    Google Scholar 

  36. Kim, Y.H., Cahyadi, W.A., Chung, Y.H.: Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photon. J. 7(6), 1–9 (2015)

    Article  Google Scholar 

  37. Schulz, D., Jungnickel, V., Das, S., Hohmann, J., Hilt, J., Hellwig, P., Paraskevopoulos, A., Freund, R.: Long-term outdoor measurements using a rate-adaptive hybrid optical wireless/60 GHz link over 100 m. In: IEEE 19th International Conference Transparent Optical Networks (ICTON), pp. 1–4 (2017)

    Google Scholar 

  38. Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E.: Optical Wireless Communications: An Emerging Technology. Springer (2016)

    Google Scholar 

  39. Stark, R.E.: Road surfaces reflectance influences lighting design. Light. Design Appl. (1986)

    Google Scholar 

  40. Agreement Addendum 111: Regulation No. 112 Revision 3-unece (2013)

    Google Scholar 

  41. Miramirkhani, F., Narmanlioglu, O., Uysal, M., Panayirci, E.: A mobile channel model for VLC and application to adaptive system design. IEEE Commun. Lett. 21(5), 1035–1038 (2017)

    Article  Google Scholar 

  42. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  43. Fath, T., Haas, H.: Performance comparison of MIMO techniques for optical wireless communications in indoor environment. IEEE Trans. Commun. 61(2), 733–742 (2013)

    Article  Google Scholar 

  44. Morgado, E., Mora-Jimenez, I., Vinagre, J.J., Ramos, J., Caamano, A.J.: End-to-end average BER in multihop wireless networks over fading channels. IEEE Trans. Wirel. Commun. 9(8), 2478–2487 (2010)

    Article  Google Scholar 

  45. Florea, A., Yanikomeroglu, H.: On the optimal number of hops in infrastructure-based fixed relay networks. In: IEEE Global Telecommunications Conference (GLOBECOM 2005), pp. 3242–3247 (2005)

    Google Scholar 

  46. Sperling, L.H.: Introduction to Physical Polymer Science. Wiley, New York (2005)

    Book  Google Scholar 

  47. Grubor, J., Randel, S., Langer, K.D., Walewski, J.W.: Broadband information broadcasting using LED-based interior lighting. J. Lightwave Technol. 26(24), 3883–3892 (2008)

    Article  Google Scholar 

  48. Ucar, S., Ergen, S., Ozkasap, O.: IEEE 802.11p and visible light hybrid communication based secure autonomous platoon. IEEE Trans. Veh. Technol. 67(9), 8667–8681 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian-Ovidiu Ivascu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivascu, CO., Ursutiu, D., Samoila, C. (2021). Visible Light Communication for Automotive Market Weather Conditions Simulation. In: Auer, M., May, D. (eds) Cross Reality and Data Science in Engineering. REV 2020. Advances in Intelligent Systems and Computing, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-52575-0_53

Download citation

Publish with us

Policies and ethics