Skip to main content

Abstract

Breast cancer is considered one of the primary causes of mortality among women aged 20–59 worldwide. Early detection and treatment can allow patients to have proper treatment and consequently reduce rate of morbidity of breast cancer. Research indicates that most experienced physicians can diagnose cancer with 79% accuracy while 91% correct diagnosis is achieved using machine learning techniques. In this paper, we present the most recent breast cancer detection and classification models that are machine learning based models by analyzing them in the form of comparative study. Also, in this paper, the datasets that are public for use and popular as well are listed in the recent work to facilitate any new experiments and comparisons. The comparative analysis shows that the recent highest accuracy models based on simple detection and the classification architectures are You Only Look Once (YOLO) and RetinaNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, P., Levin, B., et al.: World cancer report 2008. IARC Press, International Agency for Research on Cancer (2008)

    Google Scholar 

  2. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Metwally, M.K., Kadah, Y.M., Han, S.M., Kim, T.-S.: An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J. Med. Biol. Eng. 38(3), 443–456 (2017)

    Article  Google Scholar 

  3. Al-masni, M., Al-antari, M., Park, J., Gi, G., Kim, T., Rivera, P., Valarezo, E., Han, S.-M., Kim, T.-S.: Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017), Jeju Island, South Korea, pp. 1230–1236(2017)

    Google Scholar 

  4. Al-masni, M.A., Al-antari, M., Park, J.-M.P., Gi, G., Kim, T.-Y.K., Rivera, P., Valarezo, E., Choi, M.-T., Han, S.-M., Kim, T.-S.: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018)

    Article  Google Scholar 

  5. Al-antari, M.A., Al-masni, M.A., Park, S.U., Park, J.H., Kadah, Y.M., Han, S.M., Kim, T.S.: Automatic computer-aided diagnosis of breast cancer in digital mammograms via deep belief network. In: Global Conference on Engineering and Applied Science (GCEAS), Japan, pp. 1306–1314 (2016)

    Google Scholar 

  6. Al-antari, M.A., Al-masni, M.A., Kadah, Y.M.: Hybrid model of computer-aided breast cancer diagnosis from digital mammograms. J. Sci. Eng. 04(2), 114–126 (2017)

    Google Scholar 

  7. Dromain, C., Boyer, B., Ferré, R., Canale, S., Delaloge, S., Balleyguier, C.: Computed aided diagnosis (CAD) in the detection of breast cancer. Eur. J. Radiol. 82(3), 417–423 (2013)

    Article  Google Scholar 

  8. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Australia (2015)

    Google Scholar 

  9. Wang, Y., Tao, D., Gao, X., Li, X., Wang, B.: Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions. Pattern Recognit. 44(9), 1903–1915 (2011)

    Article  Google Scholar 

  10. Rahmati, P., Adler, A., Hamarneh, G.: Mammography segmentation with maximum likelihood active contours. Med. Image Anal. 16(9), 1167–1186 (2012)

    Article  Google Scholar 

  11. Domínguez, A.R., Nandi, A.: Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit. 42(6), 1138–1148 (2009)

    Article  Google Scholar 

  12. Qiu, Y., Yan, S., Gundreddy, R.R., Wang, Y., Cheng, S., Liu, H., Zheng, B.: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology. J. X-Ray Sci. Technol. 25(5), 751–763 (2017)

    Article  Google Scholar 

  13. Dhungel, N., Carneiro, G., Bradley, A.P.: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37(1), 114–128 (2017)

    Article  Google Scholar 

  14. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  15. Becker, A.S., Marcon, M., Ghafoor, S., Wurnig, M.C., Frauenfelder, T., Boss, A.: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest. Radiol. 52(7), 434–440 (2017)

    Article  Google Scholar 

  16. Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  17. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2015)

    Google Scholar 

  18. Dhungel, N., Carneiro, G., Bradley, A.P.: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37, 114–128 (2017)

    Article  Google Scholar 

  19. Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E.: A region based convolutional network for tumor detection and classification in breast mammography. In: Deep Learning and Data Labeling for Medical Applications, pp. 197–205. Springer (2016)

    Google Scholar 

  20. Akselrod-Ballin, A., Karlinsky, L., Hazan, A., Bakalo, R., Horesh, A.B., Shoshan, Y., et al.: Deep learning for automatic detection of abnormal findings in breast mammography. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 321–329. Springer (2017)

    Google Scholar 

  21. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 4165 (2018)

    Article  Google Scholar 

  22. Choukroun, Y., Bakalo, R., Ben-Ari, R., Akselrod-Ballin, A., Barkan, E., Kisilev, P.: Mammogram classification and abnormality detection from nonlocal labels using deep multiple instance neural network (2017)

    Google Scholar 

  23. Jalalian, A., Mashohor, S., Mahmud, H., Saripan, M., Rahman, A., Ramli, B., et al.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37(3), 420–426 (2013)

    Article  Google Scholar 

  24. Digital Database for Screening Mammography. http://www.eng.usf.edu/cvprg/Mammography/Database.html

  25. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Yaffe, M.J. (ed.) Proceedings of the Fifth International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2001). ISBN 1–930524–00–5

    Google Scholar 

  26. Lee, R.S., Gimenez, F., Hoogi, A., Rubin, D.: Curated breast imaging subset of DDSM. Cancer Imaging Arch. 8 (2016)

    Google Scholar 

  27. Curated Breast Imaging Subset of DDSM. https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM

  28. The Mini–MIAS Database of Mammograms. http://peipa.essex.ac.uk/info/mias.html

  29. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  30. Orel, S.G., Kay, N., Reynolds, C., Sullivan, D.C.: BI-RADS categorization as a predictor of malignancy. Radiology 211(3), 845–850 (1999)

    Article  Google Scholar 

  31. The INbreast Dataset. http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database

  32. The Breast Cancer Digital Repository. https://bcdr.eu/

  33. Al-antari, M.A., Al-masni, M.A., Choi, M.-T., Han, S.-M., Kim, T.-S.: A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 117, 44–54 (2018)

    Article  Google Scholar 

  34. Jiang, F., Liu, H., Yu, S., Xie, Y.: Breast mass lesion classification in mammograms by transfer learning. In: Proceedings of the 5th International Conference on Bioinformatics and Computational Biology, pp. 59–62. ACM (2017)

    Google Scholar 

  35. Samala, R.K., Chan, H.-P., Hadjiiski, L.M., Helvie, M.A., Cha, K.H., Richter, C.D.: Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Phys. Med. Biol. 62(23), 8894 (2017)

    Article  Google Scholar 

  36. Levy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks. arXiv:1612.00542 (2016)

  37. Yuan, Z.-W., Jun, Z.: Feature extraction and image retrieval based on AlexNet. In: Eighth International Conference on Digital Image Processing (ICDIP 2016), vol. 10033, p. 100330E. International Society for Optics and Photonics (2016)

    Google Scholar 

  38. Wu, C., Wen, W., Afzal, T., Zhang, Y., Chen, Y.: A compact DNN: approaching GoogleNet-level accuracy of classification and domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5668–5677 (2017)

    Google Scholar 

  39. Jung, H., Kim, B., Lee, I., Yoo, M., Lee, J., Ham, S., Woo, O., Kang, J.: Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. PloS One 13(9), e0203355 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamed, G., Marey, M.A.ER., Amin, S.ES., Tolba, M.F. (2020). Deep Learning in Breast Cancer Detection and Classification. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_30

Download citation

Publish with us

Policies and ethics