Keywords

Mathematics Subject Classification (2010)

7.1 Introduction

The investigations of various q-deformations (quantum deformations) of Lie algebras began a period of rapid expansion in 1980s stimulated by introduction of quantum groups motivated by applications to the quantum Yang-Baxter equation, quantum inverse scattering methods and constructions of the quantum deformations of universal enveloping algebras of semi-simple Lie algebras. In [2, 22,23,24,25, 27,28,29, 35, 36, 50,51,52] various versions of q-deformed Lie algebras appeared in physical contexts such as string theory, vertex models in conformal field theory, quantum mechanics and quantum field theory, q-deformations of infinite-dimensional algebras, primarily the q-deformed Heisenberg algebras [34], q-deformed oscillator algebras and q-deformed Witt and q-deformed Virasoro algebras, and some interesting q-deformations of the Jacobi identity for Lie algebras in these q-deformed algebras were observed.

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced first by Larsson, Hartwig and Silvestrov [33], where the general quasi-deformations and discretizations of Lie algebras of vector fields using more general \(\sigma \)-derivations (twisted derivations) and a general method for construction of deformations of Witt and Virasoro type algebras based on twisted derivations have been developed, initially motivated by the q-deformed Jacobi identities observed for the q-deformed algebras in physics, along with q-deformed versions of homological algebra and discrete modifications of differential calculi. The general abstract quasi-Lie algebras and the subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras as well as their general colored (graded) counterparts have been introduced [33, 45,46,47, 59]. Subsequently, various classes of Hom-Lie admissible algebras have been considered in [53]. In particular, in [53], the Hom-associative algebras have been introduced and shown to be Hom-Lie admissible, that is leading to Hom-Lie algebras using commutator map as new product, and in this sense constituting a natural generalization of associative algebras, as Lie admissible algebras leading to Lie algebras via commutator map as new product. In [53], moreover several other interesting classes of Hom-Lie admissible algebras generalising some classes of non-associative algebras, as well as examples of finite-dimensional Hom-Lie algebras have been described. Since these pioneering works [33, 43, 45,46,47,48, 53, 55, 58], Hom-algebra structures have developed in a popular broad area with increasing number of publications in various directions. In Hom-algebra structures, defining algebra identities are twisted by linear maps. Hom-algebras structures are very useful since Hom-algebra structures of a given type include their classical counterparts and open more possibilities for deformations, extensions of cohomological structures and representations (see for example [3, 4, 20, 45, 56, 63, 64] and references therein).

Ternary algebras and more generally n-ary Lie algebras first appeared in Nambu’s generalization of Hamiltonian mechanics, using a ternary generalization of Poisson algebras [54]. The mathematical algebraic foundations of Nambu mechanics have been developed by Takhtajan and Daletskii in [30, 60, 61]. Filippov, in [32] introduced n-Lie algebras. In [21], Leibnitz n-algebras have been studied. Properties and classification of n-ary algebras, including solvability and nilpotency, were studied in [10,11,12,13,14,15,16,17, 37]. The general cohomology theory for n-Lie algebras and Leibniz n-algebras was established in [57]. The structure and classification theory of finite-dimensional n-Lie algebras was considered in [49] and many other authors. For more details of the theory and applications of n-Lie algebras, see [31] and references therein.

Hom-type generalization of n-ary algebras, such as n-Hom-Lie algebras and other n-ary Hom algebras of Lie type and associative type, were introduced in [8], by twisting the identities defining them using a set of linear maps, together with the particular case where all these maps are equal and are algebra morphisms. A way to generate examples of such algebras from non Hom-algebras of the same type is introduced. Further properties, construction methods, examples, cohomology and central extensions of n-ary Hom-algebras have been considered in [5,6,7, 42, 43, 62, 65]. The construction of \((n+1)\)-Lie algebras induced by n-Lie algebras using combination of bracket multiplication with a trace, motivated by the work of Awata et al. [9] on the quantization of the Nambu brackets, was generalized using the brackets of general Hom-Lie algebra or n-Hom-Lie and trace-like linear forms depending on the linear maps defining the Hom-Lie or n-Hom-Lie algebras [6, 7]. Generalized derivations of Lie color algebras and n-ary (color) algebras have been studied in [26, 38,39,40,41]. Derivations, L-modules, L-comodules and Hom-Lie quasi-bialgebras have been considered in [18, 19]. Super 3-Lie algebras induced by super Lie algebras in similar way have been considered in [1].

The purpose of this paper is to generalize some results on either n-Lie algebras or n-Hom-Lie algebras to the case of n-Hom-Lie color algebras. Then we introduce and give some constructions of n-Hom-Lie color algebras. Section 7.2 contains some necessary important basic notions and notations on graded spaces and algebras and n-ary algebras and used in other sections. Section 7.3 presents some useful methods for construction of n-Hom-Lie color algebras. In Sect. 7.4, Hom-modules over n-Hom-Lie color algebras are considered. Section 7.5 is devoted to generalized derivations of color Hom-algebras and their color Hom-subalgebras.

Throughout this paper, all graded linear spaces are assumed to be over a field \(\mathbb {K}\) of characteristic different from 2.

7.2 Preliminaries

This section contains necessary important basic notions and notations on graded spaces and algebras and n-ary algebras used in other sections.

Definition 7.1

  1. (1)

    Let G be an abelian group. A linear space V is said to be a G-graded if, there exists a family \((V_a)_{a\in G}\) of linear subspaces of V such that

    $$V=\bigoplus _{a\in G} V_a.$$
  2. (2)

    An element \(x\in V\) is said to be homogeneous of degree \(a\in G\) if \(x\in V_a\). We denote \(\mathcal {H}(V)\) the set of all homogeneous elements in V.

  3. (3)

    Let \(V=\oplus _{a\in G} V_a\) and \(V'=\oplus _{a\in G} V'_a\) be two G-graded linear spaces. A linear mapping \(f : V\rightarrow V'\) is said to be homogeneous of degree b if

    $$f(V_a)\subseteq V'_{a+b}, \quad \text { for all }\quad a\in G.$$

    If, f is homogeneous of degree zero i.e. \(f(V_a)\subseteq V'_{a}\) holds for any \(a\in G\), then f is said to be even.

Definition 7.2

  1. (1)

    An algebra \((A, \cdot )\) is said to be G-graded if its underlying linear space is G-graded i.e. \(A=\bigoplus _{a\in G}A_a\), and if furthermore

    $$A_a\cdot A_b\subseteq A_{a+b}, \quad \text { for all } \quad a, b\in G.$$
  2. (2)

    A morphism \(f : A\rightarrow A'\) of G-graded algebras A and \(A'\) is by definition an algebra morphism from A to \(A'\) which is, in addition an even mapping.

Definition 7.3

Let G be an abelian group. A map \(\varepsilon :G\times G\rightarrow \mathbf{\mathbb {K}^*}\) is called a skew-symmetric bicharacter  on G if the following identities hold for all \(a, b, c\in G\):

  1. (i)

    \(\varepsilon (a, b)\varepsilon (b, a)=1\),

  2. (ii)

    \(\varepsilon (a, b+c)=\varepsilon (a, b)\varepsilon (a, c)\),

  3. (iii)

    \(\varepsilon (a+b, c)=\varepsilon (a, c)\varepsilon (b, c)\),

If x and y are two homogeneous elements of degree a and b respectively and \(\varepsilon \) is a skew-symmetric bicharacter, then we shorten the notation by writing \(\varepsilon (x, y)\) instead of \(\varepsilon (a, b)\).

Example 7.1

Some standard examples of skew-symmetric bicharacters are:

  1. (1)

    \(G=\mathbb {Z}_2,\quad \varepsilon (i, j)=(-1)^{ij}\), or more generally

    $$\begin{aligned} \displaystyle \begin{array}{c} G=\mathbb {Z}_2^n=\{(\alpha _1, \dots , \alpha _n)| \alpha _i\in \mathbb {Z}_2 \}, \\ \displaystyle \varepsilon ((\alpha _1, \dots , \alpha _n), (\beta _1, \dots , \beta _n)):= (-1)^{\alpha _1\beta _1+\dots +\alpha _n\beta _n}. \end{array} \end{aligned}$$
  2. (2)

    \(G=\mathbb {Z}_2\times \mathbb {Z}_2,\quad \varepsilon ((i_1, i_2), (j_1, j_2)=(-1)^{i_1j_2-i_2j_1}\),

  3. (3)

    \(G=\mathbb {Z}\times \mathbb {Z} ,\quad \varepsilon ((i_1, i_2), (j_1, j_2))=(-1)^{(i_1+i_2)(j_1+j_2)}\),

  4. (4)

    \(G=\{-1, +1\} , \quad \varepsilon (i, j)=(-1)^{(i-1)(j-1)/{4}}\).

Definition 7.4

An n-Lie algebra is a linear spaces V equipped with n-ary operation which is skew-symmetric for any pair of variables and satisfies the following identity:

$$\begin{aligned} \begin{array}{l} [x_1, \dots , x_{n-1}, [y_1, \dots , y_n]] =\\ = \displaystyle \sum _{i=1}^n[y_1, \dots , y_{i-1}, [x_1, \dots , x_{n-1}, y_i], y_{i+1}, \dots y_{n}]. \end{array} \end{aligned}$$
(7.1)

Definition 7.5

An n-Hom-Lie color algebra is a graded linear space \(L=\oplus L_a, a\in G\) with an n-linear map \([\cdot \dots , \cdot ]: L\times \dots \times L\rightarrow L\), a bicharacter \(\varepsilon : G\times G\rightarrow \mathbf{K}^*\) and an even linear map \(\alpha : L\rightarrow L\) such that

$$\begin{aligned}{}[x_1, \dots , x_i, x_{i+1}, \dots , x_n]= & {} -\varepsilon (x_i, x_{i+1})[x_1, \dots , x_{i+1}, x_i, \dots , x_n], \\&\quad \quad \quad \quad \quad \,\,\, i=1,2, \dots n-1. \nonumber \end{aligned}$$
(7.2)
$$\begin{aligned} \begin{array}{l} [\alpha (x_1), \dots , \alpha (x_{n-1}), [y_1, y_2, \dots , y_{n}]] = \\ =\displaystyle \sum _{i=1}^n\varepsilon (X, Y_i)[\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}),\dots , \alpha (y_{n})] \end{array} \end{aligned}$$
(7.3)

where \(x_i, y_j\in \mathcal {H}(L)\), \(X=\sum _{i=1}^{n-1}x_i\), \(Y_i=\sum _{j=1}^iy_{j-1}\) and \(y_0=e\).

Remark 7.1

Whenever \(n=2\) (resp. \(n=3\)) we recover Hom-Lie color algebras  (resp. ternairy Hom-Lie color algebras).

Remark 7.2

  1. (1)

    When \(\alpha =id\), we get n-Lie color algebra.

  2. (2)

    When \(G=\{e\}\) and \(\alpha =id\), we get n-Lie algebra.

  3. (3)

    When \(G=\{e\}\) and \(\alpha \ne id\), we get n-Hom-Lie algebra.

Definition 7.6

A morphism \(f : (L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\rightarrow (L', [\cdot , \dots , \cdot ]', \varepsilon , \alpha ')\) of an n-Hom-Lie color algebras is an even linear map \(f : L\rightarrow L\) such that \(f\circ \alpha =\alpha \circ f\) and for any \(x_i\in \mathcal {H}(L)\),

$$f([x_1, \dots , x_n])=[f(x_1), \dots , f(x_n)]'$$

Definition 7.7

(1) An n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is said to be multiplicative if \(\alpha \) is an endomorphism, i.e. a linear map on L which is also a homomorphism with respect to multiplication \([\cdot , \dots , \cdot ]\)).

(2) An n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is said to be regular if \(\alpha \) is an automorphism.

(3) An n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is said to be involutive if \(\alpha ^2=id\).

Example 7.2

Let \(G=\mathbb {Z}_2,\quad \varepsilon (i, j)=(-1)^{ij}\), \(L=L_0\oplus L_1=<e_2, e_4>\oplus <e_1, e_3>\),

$$[e_1, e_2, e_3]=e_2,\quad [e_1, e_2, e_4]=e_1,\quad [e_1, e_3, e_4]=[e_2, e_3, e_4]=0,$$

and \(\alpha (e_1)=e_3, \quad \alpha (e_2)=e_4, \quad \alpha (e_3)=\alpha (e_4)=0.\) Then \((L, [\cdot , \cdot , \cdot ], \varepsilon , \alpha )\) is a 3-Hom-Lie color algebra.

Example 7.3

Let L be a graded linear space

$$L=L_{(0, 0)}\oplus L_{(0, 1)}\oplus L_{(1, 0)}\oplus L_{(1, 1)}$$

with \(L_{(0, 0)}=<e_1, e_2>,\quad L_{(0, 1)}=<e_3>,\quad L_{(1, 0)}=<e_4>,\quad L_{(1, 1)}=<e_5>.\)

The 4-ary even linear multiplication \([\cdot , \cdot , \cdot , \cdot ] : L\times L\times L\times L\rightarrow L\) defined for basis \(\{e_i\}, i=1, \dots ,5\) by

$$\begin{aligned} \begin{array}{c} {[}e_2, e_3, e_4, e_5]=e_1, [e_1, e_3, e_4, e_5]=e_2, [e_1, e_2, e_4, e_5]=e_3, \\ {[}e_1, e_2, e_3, e_4]=0, [e_1, e_2, e_3, e_5]=0 \\ \end{array} \end{aligned}$$

makes L into the five dimensional 4-Lie color algebra.

Now define on \((L, [\cdot , \cdot , \cdot , \cdot ], \varepsilon )\) an even endomorphism \(\alpha :L\rightarrow L\) by

$$ \alpha (e_1)=e_2,\quad \alpha (e_2)=e_1, \quad \alpha (e_i)=e_i, i=3, 4, 5. $$

Then \(L_\alpha =(L, [\cdot , \cdot , \cdot , \cdot ]_\alpha , \varepsilon , \alpha )\) is a 4-Hom-Lie color algebra. Observe that \(\alpha \) is involutive (bijective).

Definition 7.8

A graded subspace H of an n-Hom-Lie color algebra L is a color Hom-subalgebra of L if

  1. (i)

    \(\alpha (H)\subseteq H\),

  2. (ii)

    \([H, H, \dots , H]\subseteq H\).

Definition 7.9

Let \(L_1, L_2, \dots , L_n\) be Hom-subalgebras of an n-Hom-Lie color algebra L. Denote by \([L_1, L_2, \dots , L_n]\) the Hom-subalgebra of L generated by all elements \([x_1, x_2, \dots , x_n]\), where \(x_i\in L_i, i=1, 2, \dots , n\).

  1. (i)

    The sequence \(L_1, L_2, \dots , L_n, \dots \) defined by

    $$\begin{aligned} \begin{array}{c} L_0=L,\quad L_1=[L_0, L_0, \dots , L_0],\quad L_2=[L_1, L_1, \dots , L_1], \dots ,\\ L_n=[L_{n-1}, L_{n-1}, \dots , L_{n-1}], \dots \end{array} \end{aligned}$$

    is called the derived sequence. 

  2. (ii)

    The sequence \(L^1, L^2, \dots , L^n, \dots \) defined by

    $$\begin{aligned} \begin{array}{c} \displaystyle L^0=L,\quad L^1=[L^0, L, \dots , L],\quad L^2=[L^1, L, \dots , L], \dots , \\ L^n=[L^{n-1}, L, \dots , L], \dots \end{array} \end{aligned}$$

    is called the descending central sequence. 

  3. (iii)

    The graded subspace Z(L) defined by

    $$\begin{aligned} Z(L)=\{x\in L| [x, L, L, \dots , L]=0\} \end{aligned}$$
    (7.4)

    is called the center of L.

Definition 7.10

  A Hom-ideal I of an n-Hom-Lie color algebra L is a graded subspace of L such that \(\alpha (I)\subseteq I\) and \([I, L, \dots , L]\subseteq I\).

Theorem 7.1

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra with surjective twisting map \(\alpha : L\rightarrow L\). Then, \(I_n, I^n\) and Z(L) are Hom-ideals of L.

Proof

We only prove, by induction, that \(I_n\) is a Hom-ideal. For this, suppose, first, that \(I_{n-1}\) is a Hom-subalgebra of L and show that \(I_n\) is a Hom-subalgebra of L. For any \(y\in \mathcal {H}(I_n)\), there exist \(y_1, y_2, \dots , y_n\in \mathcal {H}(I_{n-1})\), such that

$$y=[y_1, y_2, \dots , y_n].$$

So, \(\alpha (y)=\alpha ([y_1, y_2, \dots , y_n])=[\alpha (y_1), \alpha (y_2), \dots , \alpha (y_n)]\), which belong to \(I_n\) because \(I_{n-1}\) is a Hom-subalgebra. That is \(\alpha (I_n)\subseteq I_n\).

For any \(y_i\in \mathcal {H}(I_{n})\), there exist \(y_i^1, y_i^2, \dots , y_i^n\in I_{n-1}, i=1, 2, \dots , n\) such that

$$[y_1, y_2, \dots , y_n]=[[y_1^1, y_1^2, \dots , y_1^n], [y_2^1, \dots , y_2^n], \dots , [y_n^1, \dots , y_n^n]].$$

\(I_{n-1}\) being a Hom-subalgebra, by hypotheses, \([y_i^1, y_i^2, \dots , y_i^n]\in I_{n-1}\) for \(1\le i\le n\), and so \([y_1, y_2, \dots , y_n]\in I_n\). Thus \(I_n\) is a Hom-subalgebra.

Now, suppose that \(I_{n-1}\) is a Hom-ideal. Let \(x'_1, \dots , x'_{n-1}\in L, y\in I_n\), then there exist \(x_1, \dots , x_{n-1}\in L\), \(y_1, \dots , y_n\in I_{n-1}\) such that

$$\begin{aligned}{}[x'_1, \dots , x'_{n-1}, y]= & {} [\alpha (x_1), \dots , \alpha (x_{n-1}), [y_1, \dots , y_n]]\nonumber \\= & {} \sum _{i=1}^n\varepsilon (X, Y_i)[\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}), \alpha (y_n)]\nonumber \end{aligned}$$

As \([x_1, \dots , x_{n-1}, y_i]\in I_{n-1}\), then \([x'_1, \dots , x'_{n-1}, y]\in I_n\). So, \(I_n\) is a Hom-ideal of L. \(\square \)

7.3 Constructions of n-Hom-Lie Color Algebras

In this section we present some useful methods for construction of n-Hom-Lie color algebras.

Proposition 7.1

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\xi \in L_e\) such that \(\alpha (\xi )=\xi \).

Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon , \alpha )\) is an \((n-1)\)-Hom-Lie color algebra with

$$\{x_1, \dots , x_{n-1}\}=[\xi , x_1, \dots , \dots , x_{n-1}].$$

Proof

With conditions in the statement,

$$\begin{aligned}&\{\alpha (x_1), \dots , \alpha (x_{n-2}), \{y_1, \dots , y_{n-1}\}\}=\nonumber \\&=[\xi ,\alpha ( x_1), \dots , \alpha (x_{n-2}), [\xi , y_1, \dots , y_{n-1}]]\nonumber \\&=[\alpha (\xi ),\alpha ( x_1), \dots , \alpha (x_{n-2}), [\xi , y_1, \dots , y_{n-1}]]\nonumber \\&=[[\xi , x_1, \dots , x_{n-2}, \xi ], \alpha (y_1), \dots , \alpha (y_{n-1})]\nonumber \\&\quad +\sum _{i=i}^{n-1}\varepsilon (X, Y_i)[\xi , \alpha (y_1), \dots , \alpha (y_{i-1}), [\xi , x_1, \dots , x_{n-2}, y_i], \alpha (y_{i+1}), \dots , \alpha (y_{n-1})]\nonumber \\&=\sum _{i=i}^{n-1}\varepsilon (X, Y_i)\{\alpha (y_1), \dots , \alpha (y_{i-1}), \{x_1, \dots , x_{n-2}, y_i\}, \alpha (y_{i+1}), \dots , \alpha (y_{n-1})\}\nonumber . \end{aligned}$$

which completes the proof. \(\square \)

Corollary 7.1

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\xi _i\in L_e\) such that \(\alpha (\xi _i)=\xi _i, i=1,2, \dots , k\).

Then \(L_k=(L, \{\cdot , \dots , \cdot \}_k, \varepsilon , \alpha )\) is an \((n-k)\)-Hom-Lie color algebra with

$$\{x_1, \dots , x_{n-k}\}_k=[\xi _1, \dots , \xi _k, x_1\dots , \dots , x_{n-k}].$$

Corollary 7.2

Let \((L, [\cdot , \dots , \cdot ], \varepsilon )\) be an n-Lie color algebra and \(\xi \in L_e\).

Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon )\) is an \((n-1)\)-Lie color algebra with

$$\{x_1, \dots , x_{n-1}\}=[\xi , x_1, \dots , \dots , x_{n-1}].$$

Theorem 7.2

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\beta \) be an even endomorphism of L. Then

$$L_\beta =(L, \{\cdot , \dots , \cdot \}=\beta [\cdot , \dots , \cdot ], \varepsilon , \beta \alpha )$$

is an n-Hom-Lie color algebra.

Moreover suppose that \((L', [\cdot , \dots , \cdot ]', \varepsilon , \alpha ')\) is another n-Hom-Lie color algebra and \(\beta '\) be an even endomorphism of \(L'\). If

$$f : (L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\rightarrow (L', [\cdot , \dots , \cdot ]', \varepsilon , \alpha ')$$

is a morphism such that \(f\beta =\beta 'f\), then \(f : L_\beta \rightarrow L_{\beta '}\) is also a morphism.

Proof

First part is proved as follows:

$$\begin{aligned}&\{\beta \alpha (x_1), \dots , \beta \alpha (x_{n-1}), \{y_1, \dots , y_n\}\}=\nonumber \\&=\beta ([\beta \alpha (x_1), \dots , \beta \alpha (x_{n-1}), \beta [y_1, \dots , y_n]])\nonumber \\&=\beta ^2\Big ([\alpha (x_1), \dots , \alpha (x_{n-1}), [y_1, y_2, \dots , y_{n}]]\Big )\nonumber \\&=\beta ^2\left( \sum _{i=1}^n\varepsilon (X, Y_i)[\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}),\dots , \alpha (y_{n})]\right) \nonumber \\&=\sum _{i=1}^n\varepsilon (X, Y_i)\beta ^2\Big ([\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}),\dots , \alpha (y_{n})]\Big )\nonumber \\&=\sum _{i=1}^n\varepsilon (X, Y_i)\beta [\beta \alpha (y_1), \dots , \beta \alpha (y_{i-1}), \beta [x_1, \dots , x_{n-1}, y_i], \beta \alpha (y_{i+1}),\dots , \beta \alpha (y_{n})]\nonumber \\&=\sum _{i=1}^n\varepsilon (X, Y_i)\{\beta \alpha (y_1), \dots , \beta \alpha (y_{i-1}), \{x_1, \dots , x_{n-1}, y_i\}, \beta \alpha (y_{i+1}),\dots , \beta \alpha (y_{n})\}\nonumber . \end{aligned}$$

Second part is proved as follows:

$$\begin{aligned} f(\{x_1, \dots , x_n\})= & {} f([x_1, \dots , x_n]_\beta ) =f\beta [x_1, \dots , x_n]=f[\beta (x_1), \dots , \beta (x_n)]\nonumber \\= & {} [f\beta (x_1), \dots , f\beta (x_n)]'=[\beta 'f(x_1), \dots , \beta 'f(x_n)]'\nonumber \\= & {} \beta '[f(x_1), \dots , f(x_n)]'=[f(x_1), \dots , f(x_n)]'_{\beta '}\nonumber \\= & {} \{ f(x_1), \dots , f(x_n)\}'\nonumber \end{aligned}$$

This completes the proof. \(\square \)

Taking \(\beta =\alpha ^n\) leads to the following statement.

Corollary 7.3

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. Then, for any positive integer n,

$$(L, \alpha ^n[\cdot , \dots , \cdot ], \varepsilon , \alpha ^{n+1})$$

is also an n-Hom-Lie color algebra.

Taking \(\beta =\alpha \) and \(\alpha =id\) leads to the following statement.

Corollary 7.4

Let \((L, [\cdot , \dots , \cdot ], \varepsilon )\) be an n-Lie color algebra and \(\alpha \) be an even endomorphism of L. Then

$$L_\alpha =(L, \{\cdot , \dots , \cdot \}=\alpha [\cdot , \dots , \cdot ], \varepsilon , \alpha )$$

is a multiplicative n-Hom-Lie color algebra.

Taking \(\beta \in Aut(L), \beta =\alpha ^{-1}\) leads to the following statement.

Corollary 7.5

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a regular n-Hom-Lie color algebra. Then

$$L_{\alpha ^{-1}}=(L, \{\cdot , \dots , \cdot \}=\alpha ^{-1}[\cdot , \dots , \cdot ], \varepsilon )$$

is an n-Lie color algebra.

Taking \(\beta =\alpha \) leads to the following statement.

Corollary 7.6

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an involutive n-Hom-Lie color algebra. Then

$$L_\beta =(L, \{\cdot , \dots , \cdot \}=\alpha [\cdot , \dots , \cdot ], \varepsilon )$$

is an n-Lie color algebra.

Theorem 7.3

Let \((A, \cdot )\) be a commutative associative algebra and \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra. The tensor product \(A\otimes L=\sum _{g\in G}(A\otimes L)_g=\sum _{g\in G}A\otimes L_g\) with the bracket

$$ [a_1\otimes x_1, \dots , a_n\otimes x_n]'=a_1\dots a_n\otimes [x_1, \dots , x_n], $$

the even linear map

$$ \alpha '(a\otimes x):=a\otimes \alpha (x) $$

and the bicharacter

$$ \varepsilon (a+x, b+y)=\varepsilon (x, y), \forall a, b\in A, \forall x, y\in \mathcal {H}(L), $$

is an n-Hom-Lie color algebra.

Proof

It follows from a straightforward computation. \(\square \)

In the next definition, we introduce an element of the centroid (or semi-morphism) for n-Hom-Lie color algebra.

Definition 7.11

A semi-morphism  of an n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is an even linear map \(\beta : L\rightarrow L\) such that \(\beta \alpha =\alpha \beta \) and

$$\beta [x_1, \dots , x_n]=[\beta (x_1), x_2, \dots , x_n].$$

Remark 7.3

Due to \(\varepsilon \)-skew-symmetry,

$$\beta [x_1, \dots , x_n]=[x_1, \dots \beta (x_i), \dots , x_n].$$

Theorem 7.4

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\beta : L\rightarrow L\) a semi-morphism of L. Define a new multiplication \(\{\cdot , \dots , \cdot \}: L\times \dots \times L\rightarrow L\) by

$$\{x_1, \dots , x_n\}=[x_1, \dots , \beta (x_i)\dots , x_n]$$

Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon , \alpha )\) is also an n-Hom-Lie color algebra.

Proof

The proof can be obtained as follows:

$$\begin{aligned}&\,\{\alpha (x_1), \dots , \alpha (x_{n-1}), \{y_1, \dots , y_n\}\}=\nonumber \\&=[\alpha (x_1), \dots , \beta \alpha (x_i), \dots , \alpha (x_{n-1}), [y_1, \dots , \beta (y_j), \dots , y_n]]\nonumber \\&=[\alpha (x_1), \dots , \alpha \beta (x_i), \dots , \alpha (x_{n-1}), [y_1, \dots , \beta (y_j), \dots , y_n]]\nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{k-1}),[x_1, \dots , \beta (x_i), \dots , x_{n-1}, y_k], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\, \alpha (y_{k+1}), \dots , \alpha \beta (y_j), \dots \alpha (y_n)] \nonumber \\&+\varepsilon (X, Y_j)[\alpha (y_1), \dots , \alpha (y_{j-1}), [x_1, \dots , \beta (x_i), \dots , x_{n-1}, \beta (y_j)], \alpha (y_{j+1}), \dots , \alpha (y_n)]\nonumber \\&+\sum _{k>j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha \beta (y_{j}), \dots , \alpha (y_{k-1}) [x_1, \dots , \beta (x_i), \dots , x_{n-1}, y_k], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha (y_n)] \nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \beta \alpha (y_j), \dots \alpha (y_n)] \nonumber \\&+\varepsilon (X, Y_j)[\alpha (y_1), \dots , \alpha (y_{j-1}), \beta (\{x_1, \dots , x_i, \dots , x_{n-1}, y_j\}), \alpha (y_{j+1}), \dots , \alpha (y_n)]\nonumber \\&+\sum _{k>j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \beta \alpha (y_{j}), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha (y_n)]\nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\,\quad \alpha (y_{k+1}), \dots , \alpha (y_j), \dots \alpha (y_n)\}\nonumber \\&+\varepsilon (X, Y_j)\{\alpha (y_1), \dots , \alpha (y_{j-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_j\}, \alpha (y_{j+1}), \dots , \alpha (y_n)\}\nonumber \\&+\sum _{k>j}\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{j}), \dots , \alpha (y_{k-1}) \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha (y_n)\}\nonumber . \end{aligned}$$

This completes the proof. \(\square \)

Corollary 7.7

Let \((L, [\cdot , \dots , \cdot ], \varepsilon )\) be an n-Lie color algebra and \(\alpha : L\rightarrow L\) a semi-morphism of L. Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon )\) is another n-Lie color algebra, with

$$\{x_1, \dots , x_n\}=[x_1, \dots , \alpha (x_i)\dots , x_n]$$

Definition 7.12

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra. An averaging operator of an n-Hom-Lie color algebra L is an even linear map \(\beta : L\rightarrow L\) such that

  1. (1)

    \(\beta \alpha =\alpha \beta \)

  2. (2)

    \(\beta [x_1, \dots , \beta (x_i), \dots , x_n]=[x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_n]\)

Theorem 7.5

Let \((L, [\cdot , \dots , \cdot ], \varepsilon )\) be an n-Lie color algebra and \(\alpha : L\rightarrow L\) an averaging operator of L. Define a new multiplication \(\{\cdot , \dots , \cdot \}: L\times \dots \times L\rightarrow L\) by

$$\{x_1, \dots , x_n\}=[x_1, \dots , \alpha (x_i)\dots , x_n]$$

Then \(L_\alpha =(L, \{\cdot , \dots , \cdot \}, \varepsilon , \alpha )\) is an n-Hom-Lie color algebra.

Proof

The proof can be obtained as follows:

$$\begin{aligned}&\{\alpha (x_1), \dots , \alpha (x_{n-1}), \{y_1, \dots , y_n\}\}=\nonumber \\&=[\alpha (x_1), \dots , \alpha ^2(x_i), \dots , \alpha (x_{n-1}), [y_1, \dots , \alpha (y_j), \dots , y_n]]\nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{k-1}), [x_1, \dots , \alpha (x_i), \dots , x_{n-1}, y_k], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha ^2(y_j), \dots \alpha (y_n)]\nonumber \\&+\varepsilon (X, Y_j)[\alpha (y_1), \dots , \alpha (y_{j-1}), [x_1, \dots , \alpha (x_i), \dots , x_{n-1}, \alpha (y_j)], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{j+1}), \dots , \alpha (y_n)]\nonumber \\&+\sum _{k>j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha ^2(y_{j}), \dots , \alpha (y_{k-1}) [x_1, \dots , \alpha (x_i), \dots , x_{n-1}, y_k], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \alpha (y_{k+1}), \dots , \alpha (y_n)]\nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha (y_j), \dots \alpha (y_n)\}\nonumber \\&+\varepsilon (X, Y_j)[\alpha (y_1), \dots , \alpha (y_{j-1}), \alpha (\{x_1, \dots , x_i, \dots , x_{n-1}, y_j\}), \alpha (y_{j+1}), \dots , \alpha (y_n)]\nonumber \\&\quad +\sum _{k>j}\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{j}), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad \quad \alpha (y_{k+1}), \dots , \alpha (y_n)]\nonumber \\&=\sum _{k<j}\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha (y_{k+1}), \dots , \alpha (y_j), \dots \alpha (y_n)\}\nonumber \\&+\varepsilon (X, Y_j)\{\alpha (y_1), \dots , \alpha (y_{j-1}), \{x_1, \dots , x_i, \dots , x_{n-1}, y_j\}, \alpha (y_{j+1}), \dots , \alpha (y_n)\}\nonumber \\&+\sum _{k>j}\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{j}), \dots , \alpha (y_{k-1}) \{x_1, \dots , x_i, \dots , x_{n-1}, y_k\}, \nonumber \\&\qquad \qquad \qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad \qquad \alpha (y_{k+1}), \dots , \alpha (y_n)\}\nonumber . \end{aligned}$$

This ends the proof. \(\square \)

Theorem 7.6

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\beta : L\rightarrow L\) an averaging operator of L. Define a new multiplication \(\{\cdot , \dots , \cdot \}: L\times \dots \times L\rightarrow L\) by

$$\{x_1, \dots , x_n\}=[x_1, \dots , \beta (x_i)\dots , x_n]$$

Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon , \alpha )\) is also an n-Hom-Lie color algebra.

Proof

It is similar to the one of Theorem 7.4. \(\square \)

Taking \(\alpha =id\), yields the following statement.

Corollary 7.8

Let \((L, [\cdot , \dots , \cdot ], \varepsilon )\) be an n-Lie color algebra and \(\alpha : L\rightarrow L\) an averaging operator of L. Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon )\) is another n-Lie color algebra, with

$$\{x_1, \dots , x_n\}=[x_1, \dots , \alpha (x_i)\dots , x_n]$$

Taking \(\alpha =\beta \), yields the following statement.

Corollary 7.9

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\alpha : L\rightarrow L\) an averaging operator. Define a new multiplication \(\{\cdot , \dots , \cdot \}: L\times \dots \times L\rightarrow L\) by

$$\{x_1, \dots , x_n\}=[x_1, \dots , \alpha (x_i)\dots , x_n]$$

Then \((L, \{\cdot , \dots , \cdot \}, \varepsilon , \alpha )\) is also an n-Hom-Lie color algebra.

Theorem 7.7

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\beta : L\rightarrow L\) an averaging operator of L. Then the new bracket \(\{\cdot , \dots , \cdot \}: L\times \dots \times L\rightarrow L\) makes L into an n-Hom-Lie color algebra with

$$\{x_1, \dots , x_n\}=[x_1, \dots , \beta (x_i)\dots , \beta (x_j), \dots , x_n].$$

Proof

The proof is obtained as follows:

$$\begin{aligned}&\{\alpha (x_1), \dots , \alpha (x_{n-1}), \{y_1, \dots , y_n\}\}=\nonumber \\&=[\alpha (x_1), \dots , \beta \alpha (x_i), \dots , \beta \alpha (x_j), \dots , \alpha (x_{n-1}), [y_1, \dots , \beta (y_k), \dots , \beta (y_l), \dots , y_n]]\nonumber \\&=\sum _{m<k}\varepsilon (X, Y_m)[\alpha (y_1), \dots , \alpha (y_{m-1}), [x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, y_m], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \,\,\,\, \alpha (y_{m+1}), \dots , \alpha \beta (y_k), \dots , \alpha \beta (y_l), \dots , \alpha (y_n)]\nonumber \\&\quad \ +\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{k-1}), [x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, \beta (y_k)],\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \,\, \alpha (y_{k+1}), \dots , \alpha \beta (y_l), \dots , \alpha (y_n)]\nonumber \\&\quad \ +\sum _{k<m<l}\varepsilon (X, Y_m)[\alpha (y_1), \dots , \alpha \beta (y_{k}), \dots , \alpha (y_{l-1}), \nonumber \\&\qquad \, [x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, y_m], \alpha (y_{m+1}), \dots , \alpha \beta (y_{l}), \dots , \alpha (y_n)]\nonumber \\&\quad \,\,\,\, +\varepsilon (X, Y_l)[\alpha (y_1), \dots , \alpha \beta (y_{k}),\dots , \alpha (y_{l-1}), \nonumber \\&\qquad \qquad \,\,\, [x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, \beta (y_l)],\alpha (y_{l+1}), \dots , \alpha (y_n)]\nonumber \\&\quad \,\,\,\, +\sum _{m>l}\varepsilon (X, Y_m)[\alpha (y_1), \dots , \alpha \beta (y_{k}), \dots , \alpha \beta (y_{l}), \dots , \alpha (y_{m-1}), \nonumber \\&\qquad \qquad \quad [x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, y_m],\alpha (y_{m+1}), \dots , \alpha (y_n)]\nonumber \\&=\sum _{m<k}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{m-1}), \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \,\, \alpha (y_{m+1}),\dots , \alpha (y_k), \dots , \alpha (y_l), \dots , \alpha (y_n)\}\nonumber \\&\quad \ +\varepsilon (X, Y_k)[\alpha (y_1), \dots , \alpha (y_{k-1}), \beta ([x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, y_k]),\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha (y_{k+1}), \dots , \beta \alpha (y_l), \dots , \alpha (y_n)]\nonumber \\&\quad \ +\sum _{k<m<l}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{k}), \dots , \alpha (y_{m-1}), \nonumber \\&\qquad \qquad \,\, \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\},\alpha (y_{m+1}), \dots , \alpha (y_{l}), \dots , \alpha (y_n)]\nonumber \\&\quad \ +\varepsilon (X, Y_l)[\alpha (y_1), \dots , \beta \alpha (y_{k}),\dots , \alpha (y_{l-1}), \nonumber \\&\qquad \qquad \quad \,\,\, \beta ([x_1, \dots , \beta (x_i), \dots , \beta (x_j), \dots , x_{n-1}, y_l]), \alpha (y_{l+1}), \dots , \alpha (y_n)]\nonumber \\&\quad \,\,\, +\sum _{m>l}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{k}), \dots , \alpha (y_{l}), \dots , \alpha (y_{m-1}), \nonumber \\&\qquad \qquad \qquad \,\,\,\, \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\},\alpha (y_{m+1}), \dots , \alpha (y_n)\}\nonumber \end{aligned}$$
$$\begin{aligned}&=\sum _{m<k}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{m-1}), \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\}, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \, \alpha (y_{m+1}), \dots ,\alpha (y_k), \dots , \alpha (y_l), \dots , \alpha (y_n)\}\nonumber \\&\qquad +\varepsilon (X, Y_k)\{\alpha (y_1), \dots , \alpha (y_{k-1}), \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_k\},\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha (y_{k+1}), \dots , \alpha (y_l), \dots , \alpha (y_n)\}\nonumber \\&\qquad +\sum _{k<m<l}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{k}), \dots , \alpha (y_{m-1}), \nonumber \\&\qquad \qquad \,\,\,\,\, \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\},\alpha (y_{m+1}), \dots , \alpha (y_{l}), \dots , \alpha (y_n)\}\nonumber \\&+\varepsilon (X, Y_l)\{\alpha (y_1), \dots , \alpha (y_{k}),\dots , \alpha (y_{l-1}), \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_l\}),\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \, \alpha (y_{l+1}), \dots , \alpha (y_n)\}\nonumber \\&+\sum _{m>l}\varepsilon (X, Y_m)\{\alpha (y_1), \dots , \alpha (y_{k}), \dots , \alpha (y_{l}), \dots , \alpha (y_{m-1}), \nonumber \\&\qquad \qquad \,\,\,\,\, \{x_1, \dots , x_i, \dots , x_j, \dots , x_{n-1}, y_m\},\alpha (y_{m+1}), \dots , \alpha (y_n)\}\nonumber . \end{aligned}$$

This finishes the proof. \(\square \)

7.4 Hom-Modules over n-Hom-Lie Color Algebras

In this section we consider Hom-modules over n-Hom-Lie color algebras.

Definition 7.13

Let G be an abelian group. A Hom-module is a pair \((M,\alpha _M)\) in which M is a G-graded linear space and \(\alpha _M: M\longrightarrow M\) is an even linear map.

Definition 7.14

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \((M, \alpha _M)\) a Hom-module. The Hom-module \((M, \alpha _M)\) is called an n-Hom-Lie module over L if there are n polylinear maps:

$$\omega _i : L\otimes \dots L\otimes \underbrace{M}_{i}\otimes L\otimes \dots \otimes L\rightarrow M, \quad i=1, 2, \dots , n$$

such that, for any \(x_i, y_i\in \mathcal {H}(L)\) and \(m\in \mathcal {H}(M)\),

  1. (a)

    \(\omega _i(x_1, \dots , x_{i-1}, m, x_{i+1}, \dots , x_n)\) is a \(\varepsilon \)-skew-symmetric by all x-type arguments.

  2. (b)

    \(\omega _i(x_1, \dots , x_{i-1}, m, x_{i+1}, \dots , x_n)=-\varepsilon (m, x_{i+1})\omega _i(x_1, \dots , x_{i-1}, x_{i+1}, m\dots , x_n)\) for \(i=1, 2, \dots , n-1\).

  3. (c)

    \(\omega _n(\alpha (x_1), \dots , \alpha (x_{n-1}), \omega _n(y_1, \dots , y_{n-1}, m))=\)

    $$\begin{aligned}&=\sum _{i=1}^{n-1}\varepsilon (X, Y_i)\omega _n(\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}), \dots , \alpha _M(m))\nonumber \\&\qquad +\varepsilon (X, Y_n)\omega _n(\alpha (y_1), \dots , \alpha (y_{n-1}), \omega _n(x_1, \dots , x_{n-1}, m)),\nonumber \end{aligned}$$

    where \(x_i, y_j\in \mathcal {H}(L)\), \(X=\sum _{i=1}^{n-1}x_i\), \(Y_i=\sum _{j=1}^iy_{j-1}, y_0=e\) and \(m\in \mathcal {H}(M)\).

  4. (d)

    \(\omega _{n-1}(\alpha (x_1), \dots , \alpha (x_{n-2}), \alpha _M(m), [y_1, \dots , y_{n}])=\)

    $$\begin{aligned}&=\sum _{i=1}^{n}\varepsilon (X, Y_i)\omega _i(\alpha (y_1), \dots , \alpha (y_{i-1}), \omega _{n-1}(x_1, \dots , x_{n-2}, m, y_i), \nonumber \\&\qquad \qquad \qquad \qquad \quad \quad \quad \,\,\, \alpha (y_{i+1}), \dots , \alpha (y_n)]\nonumber , \end{aligned}$$

    where \(x_i, y_j\in \mathcal {H}(L)\), \(X=\sum _{i=1}^{n-2}x_i+m\), \(Y_i=\sum _{j=1}^iy_{j-1}, y_0=e\) and \(m\in \mathcal {H}(M)\).

Example 7.4

Any n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is an n-Hom-Lie module over itself by taking \(M=L\), \(\alpha _M=\alpha \) and \(\omega _i(\cdot ,\dots , \cdot )=[\cdot , \dots , \cdot ]\).

Theorem 7.8

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra, \((M, \alpha _M, \omega _i)\) an n-Hom-Lie color module and \(\beta : L\rightarrow L\) be an endomorphism. Define

$$\tilde{\omega }_i=(\beta , \dots , \beta , \underbrace{id}_i, \beta , \dots , \beta ), i=1, 2, \dots , n.$$

Then \((M, \alpha _M, \tilde{\omega }_i)\) is an n-Hom-Lie color module.

Proof

The items (a) and (b) are obvious. So we only prove (c), item (d) being proved similarly.

$$\begin{aligned}&\tilde{\omega }_n(\alpha (x_1), \dots , \alpha (x_{n-1}), \tilde{\omega }_n(y_1, \dots , y_{n-1}, m))=\nonumber \\&=\omega _n(\beta \alpha (x_1), \dots , \beta \alpha (x_{n-1}), \omega _n(\beta (y_1), \dots , \beta (y_{n-1}), m))\nonumber \\&=\omega _n(\alpha \beta (x_1), \dots , \alpha \beta (x_{n-1}), \omega _n(\beta (y_1), \dots , \beta (y_{n-1}), m))\nonumber \\&=\sum _{i=1}^{n-1}\varepsilon (X, Y_i)\omega _n(\alpha \beta (y_1), \dots , \alpha \beta (y_{i-1}), [\beta (x_1), \dots , \beta (x_{n-1}), \beta (y_i)], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad \,\, \alpha \beta (y_{i+1}), \dots , \alpha _M(m)) \nonumber \\&\qquad +\varepsilon (X, Y_n)\omega _n(\alpha \beta (y_1), \dots , \alpha \beta (y_{n-1}), \omega _n(\beta (x_1), \dots , \beta (x_{n-1}), m))\nonumber \\&=\sum _{i=1}^{n-1}\varepsilon (X, Y_i)\omega _n(\beta \alpha (y_1), \dots , \beta \alpha (y_{i-1}), \beta ([x_1, \dots , x_{n-1}, y_i]), \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \beta \alpha (y_{i+1}), \dots , \alpha _M(m))\nonumber \\&\qquad +\varepsilon (X, Y_n)\omega _n(\beta \alpha (y_1), \dots , \beta \alpha (y_{n-1}), \omega _n(\beta (x_1), \dots , \beta (x_{n-1}), m)),\nonumber \\&=\sum _{i=1}^{n-1}\varepsilon (X, Y_i)\omega _n(\beta \otimes \dots \otimes \beta \otimes id)(\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad \qquad \alpha (y_{i+1}), \dots , \alpha _M(m))\nonumber \\&\qquad +\varepsilon (X, Y_n)\omega _n(\beta \otimes \dots \otimes \beta \otimes id)\Big (id\otimes \dots \otimes id\otimes \omega _n(\beta \otimes \dots \otimes \beta \otimes id)\Big ) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \quad \qquad (\alpha (y_1), \dots , \alpha (y_{n-1}), x_1, \dots , x_{n-1}, m)\nonumber \\&=\sum _{i=1}^{n-1}\varepsilon (X, Y_i)\tilde{\omega }_n(\alpha (y_1), \dots , \alpha (y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha (y_{i+1}), \dots , \alpha _M(m))\nonumber \\&\qquad +\varepsilon (X, Y_n)\tilde{\omega }_n(\alpha (y_1), \dots , \alpha (y_{n-1}), \tilde{\omega }_n(x_1, \dots , x_{n-1}, m))\nonumber . \end{aligned}$$

This ends the proof. \(\square \)

Corollary 7.10

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be an n-Hom-Lie color algebra and \(\beta : L\rightarrow L\) be an endomorphism. Then \((L, \{\cdot , \dots , \cdot \}_i, \alpha )\), with

$$\{\cdot , \dots , \cdot \}_i=[\beta , \dots , \beta ,\underbrace{id}_i, \beta , \dots , \beta ], i=1, 2, \dots , n,$$

is an n-Hom-Lie color module.

Corollary 7.11

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. Then, for nay \(k\ge 1\), \((L, \{\cdot , \dots , \cdot \}_i^k, \alpha )\) is an n-Hom-Lie color module, with

$$\{\cdot , \dots , \cdot \}_i^{k}=[\alpha ^k, \dots , \alpha ^k,\underbrace{id}_i, \alpha ^k, \dots , \alpha ^k], i=1, 2, \dots , n.$$

We end this section by giving some results for trivial graduation i.e. \(G=\{e\}\).

Proposition 7.2

Let \((M, \alpha _M, \omega _i)\) be a module over the n-Hom-Lie algebra \((L, [\cdot , \dots , \cdot ], \alpha _L)\). Consider the direct sum of linear spaces \(A=L\oplus M\). Let us define on A the bracket

  • \(\{x_1, \dots , x_n\}=[x_1, \dots , x_n]\),

  • \(\{x_1, \dots , x_{i-1}, \dots , m, x_{i+1}, \dots , x_n\}=\omega _i(x_1, \dots , x_{i-1}, \dots , m, x_{i+1}, \dots , x_n)\),

  • \(\{x_1, \dots , x_{i}, \dots , x_{j}, \dots , x_n\}=0\), whenever \(x_i, x_j\in M\).

Then \((A, \alpha _A=\alpha _L+\alpha _M)\) is an n-Hom-Lie algebra.

Proposition 7.3

Let \((M_1, \alpha _M^1, \omega _i^1)\) and \((M_2, \alpha _M^2, \omega _i^2)\) be two modules over the n-Hom-Lie algebra \((L, [\cdot , \dots , \cdot ], \alpha )\). Then \((M, \alpha _M, \omega _i)\) is an n-Hom-Lie module with

$$M=M_1\oplus M_2, \quad \alpha _M=\alpha _M^1\oplus \alpha _M^2\quad \text{ and }\quad \omega _i=\omega _i^1\oplus \omega _i^2.$$

7.5 Generalized Derivation of Color Hom-Algebras and Their Color Hom-Subalgebras

This section is devoted to generalized derivation of color Hom-algebras and their color Hom-subalgebras.

Here we give a more general definition of derivation, centroid and related objects.

Definition 7.15

For any \(k\ge 1\), we call \(D\in End(L)\) an \(\alpha ^k\)-derivation of degree d of the multiplicative n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) if

$$\begin{aligned}&\alpha \circ D=D\circ \alpha , \end{aligned}$$
(7.5)
$$\begin{aligned}&D([x_1, \dots , x_n])= \\&\sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)]. \nonumber \end{aligned}$$
(7.6)

Example 7.5

([18]) The Laplacian of any Hom-Lie quasi-bialgebra \((\mathcal {G}, \mu , \gamma , \phi , \alpha )\) is an \(\alpha ^2\)-derivation of degree 0 of \((\Lambda \mathcal {G}, [\cdot , \cdot ]^{\mu , \alpha })\), i.e.

$$\begin{aligned} L([X, Y ]^{\mu , \alpha } )= [L(X), \alpha ^2(Y)]^{\mu , \alpha } + [\alpha ^2(X), L(Y)]^{\mu , \alpha },\quad \forall X , Y \in \Lambda \mathcal {G}. \quad \end{aligned}$$
(7.7)

Example 7.6

Now, Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. For any homogeneous elements \(x_1, \dots , x_{n-1}\) of L and any integer \(k\ge 1\), one defines the adjoint action of \(\Lambda L\) on L by

$$\begin{aligned}&ad^{[\cdot , \dots , \cdot ], \alpha ^{k}}_{x_1, \dots , x_{n-1}}([y_1, y_2, \dots , y_n]) := \\&\qquad \,\, \displaystyle \sum _{i=1}^k\varepsilon (X, Y_{i})[\alpha ^k(y_1), \dots \alpha ^k(y_{i-1}), [x_1, \dots , x_{n-1}, y_i], \alpha ^k(y_{i+1}), \dots , \alpha (y_n)], \end{aligned}$$

for any \(y_1,\dots ,y_n\in \mathcal {H}(L)\). Then \(ad^{[\cdot , \dots , \cdot ], \alpha ^{k}}_{x_1, \dots , x_{n-1}}\) is an \(\alpha ^k\)-derivation of L of degree X. We call \(ad^{[\cdot , \dots , \cdot ], \alpha ^{k}}_{x_1, \dots , x_{n-1}}\) an inner \(\alpha ^k\)-derivation. Denote by \(Inn(L)=\oplus _{k\ge -1}Inn_{\alpha ^k}(L)\) the space of all inner \(\alpha ^k\)-derivation.

The following proposition is proved by a straightforward computation.

Proposition 7.4

Let D be an \(\alpha ^k\)-derivation of an n-Hom-Lie color algebra L and \(\beta : L\rightarrow L\) an even endomorphism of L such that \(D\circ \beta =\beta \circ D\). Then, for any non-negative integer s, \(\Delta _s=D\circ \beta ^s : L\rightarrow L\) is a \((\beta ^s\alpha ^k)\)-derivation.

Corollary 7.12

If D is an \(\alpha ^{k}\)-derivation of an n-Hom-Lie color algebra L. Then \(\Delta _s\) is an \(\alpha ^{k+s}\)-derivation of L.

We denote the set of \(\alpha ^k\)-derivations of the multiplicative n-Hom-Lie color algebras L by \(Der_{\alpha ^k}(L)\). For any \(D\in Der_{\alpha ^k}(L)\) and \(D'\in Der_{\alpha ^k}(L)\), let us define their commutator \([D, D']\) as usual:

$$[D, D']=D\circ D'-\varepsilon (d, d')D'\circ D.$$

Lemma 7.1

For any \(D\in Der_{\alpha ^k}(L)\) and \(D'\in Der_{\alpha ^k}(L)\),

$$[D, D']\in Der_{\alpha ^{k+s}}(L).$$

Denote by \(Der(L)=\oplus _{k\ge -1}Der_{\alpha ^k}(L)\).

Proposition 7.5

\((Der(L), [\cdot , \cdot ], \omega )\) is a Hom-Lie color algebra, with \(\omega (D)\,{=}\,D\circ ~\alpha \).

Definition 7.16

An endomorphism D of degree d of a multiplicative n-Hom-Lie color algebra \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is called a generalized \(\alpha ^k\)-derivation if there exist linear mappings \(D', D'', \dots , D^{(n-1)}, D^{(n)}\) of degree d such that for any \(x_1,\dots ,x_n\in \mathcal {H}(L)\):

$$\begin{aligned}&D\circ \alpha =\alpha \circ D\;\;\text{ and }\;\; D^{(i)}\circ \alpha =\alpha \circ D^{(i)},\end{aligned}$$
(7.8)
$$\begin{aligned}&\begin{array}{l} D^{(n)}([x_1, \dots , x_n])= \\ \displaystyle \sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D^{(i-1)}(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)]. \end{array} \end{aligned}$$
(7.9)

An \((n{+}1)\)-tuple \((D, D', D'', \dots , D^{(n-1)}, D^{(n)})\) is called an \((n{+}1)\)-ary \(\alpha ^k\)-derivation.

The set of generalized \(\alpha ^k\)-derivation is denoted by \(GDer_{\alpha ^k}\). Set

$$GDer(L)=\oplus _{k\ge -1}GDer_{\alpha ^k}(L).$$

Definition 7.17

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. A linear mapping \(D\in End(L)\) is said to be an \(\alpha ^k\)-quasiderivation of degree d  if there exists a \(D'\in End(L)\) of degree d such that

$$\begin{aligned}&D^{'}([x_1, \dots , x_n]) = \\&\sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)] \nonumber \end{aligned}$$
(7.10)

for all \(x_1,\dots ,x_n\in \mathcal {H}(L)\)

We call \(D'\) the endomorphism associated to the \(\alpha ^k\)-quasiderivation D. The set of \(\alpha ^k\)-quasiderivations will be denoted QDer(L). Set \(QDer(L)=\oplus _{k\ge -1}QDer_{\alpha ^k}(L)\).

Definition 7.18

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. The set \(C_{\alpha ^k}(L)\) consisting of linear mapping D of degree d with the property

$$\begin{aligned}&D([x_1, \dots , x_n])= \\&\varepsilon (d, X_{i})[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)] \nonumber \end{aligned}$$
(7.11)

for all \(x_1,\dots ,x_n\in \mathcal {H}(L)\), is called the \(\alpha ^k\)-centroid of L

We recover the definition of the centroid when \(k=0\)

Definition 7.19

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. The set \(QC_{\alpha ^k}(L)\) consisting of linear mapping D of degree d with the property

$$\begin{aligned}&[D(x_1), \dots , x_n]= \\&\varepsilon (d, X_{i})[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)], \nonumber \end{aligned}$$
(7.12)

for all \(x_1,\dots ,x_n\in \mathcal {H}(L)\), is called the \(\alpha ^k\)-quasicentroid of L

Definition 7.20

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. The set \(ZDer_{\alpha ^k}(L)\) consisting of linear mappings D of degree d, such that for all \(x_1,\dots ,x_n\in \mathcal {H}(L)\):

$$\begin{aligned}&D([x_1, \dots , x_n])= \\&\varepsilon (d, X_i)[\alpha ^k(x_1), \dots , \alpha ^k(x_{i-1}), D(x_i), \alpha ^k(x_{i+1}), \dots , \alpha ^k(x_n)]=0, \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, i=1, 2, \dots , n, , \nonumber \end{aligned}$$
(7.13)

is called the set of central \(\alpha ^k\)-derivations of L

It is easy to see that

$$ ZDer(L)\subseteq Der(L)\subseteq QDer(L)\subseteq GDer(L)\subseteq End(L). $$

Proposition 7.6

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra.

  1. (1)

    GDer(L), QDer(L), C(L) are color Hom-subalgebras of \((End (L), [\cdot , \cdot ], \omega )\):

    1. (1a)

      \(\omega (GDer(L))\subseteq GDer(L)\) and \([GDer(L), GDer(L)]\subseteq GDer(L)\).

    2. (2b)

      \(\omega (QDer(L))\subseteq QDer(L)\) and \([QDer(L), QDer(L)]\subseteq QDer(L)\).

    3. (3c)

      \(\omega (C(L))\subseteq C(L)\) and \([C(L), C(L)]\subseteq C(L)\).

  2. (2)

    ZDer(L) is a color Hom-ideal of Der(L): \(\omega (ZDer(L))\subseteq ZDer(L)\) and \([ZDer(L), Der(L)]\subseteq ZDer(L)\).

Proof

(1a) Let us prove that if \(D\in GDer(L)\), then \(\omega (D)\in GDer(L)\). For any \(x_1,\dots ,x_n\in \mathcal {H}(L)\),

$$\begin{aligned}&(\omega (D^{(n)}))([x_1, \dots , x_n])=(D^{(n)}\circ \alpha )([x_1, \dots , x_i, \dots , x_n]) \nonumber \\&=D^{(n)}([\alpha (x_1), \dots , \alpha (x_i), \dots , \alpha (x_n)])\nonumber \\&=\sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^{k+1}(x_1), \dots , \alpha ^{k+1}(x_{i-1}), D^{(i-1)}\alpha (x_i), \alpha ^{k+1}(x_{i+1}), \dots , \alpha ^{k+1}(x_n)]\nonumber \\&=\sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^{k+1}(x_1), \dots , \alpha ^{k+1}(x_{i-1}), ( D^{(i-1)}\circ \alpha )(x_i), \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \alpha ^{k+1}(x_{i+1}), \dots ,\alpha ^{k+1}(x_n)]\nonumber \\&=\sum _{i=1}^n\varepsilon (d, X_{i})[\alpha ^{k+1}(x_1), \dots , \alpha ^{k+1}(x_{i-1}), \omega (D^{(i-1)})(x_i), \alpha ^{k+1}(x_{i+1}), \dots , \alpha ^{k+1}(x_n)]\nonumber . \end{aligned}$$

This means that \(\omega (D)\) is an \(\alpha ^{k+1}\)-derivation i.e. \(\omega (D)\in GDer(L)\). Now let \(D_1\in GDer_{\alpha ^{k}}(L)\) and \(D_2\in GDer_{\alpha ^{s}}(L)\), we have

$$\begin{aligned}&(D_2^{(n)}D_1^{(n)})([x_1, \dots , x_n])=D_2^{(n)}(D_1^{(n)}([x_1, \dots , x_n]))=\nonumber \\&=\sum _{i=1}^n\varepsilon (d_1, X_{i})D_2^{(n)}([\alpha ^{k}(x_1), \dots , \alpha ^{k}(x_{i-1}), D_1^{(i-1)}(x_i), \alpha ^{k}(x_{i+1}), \dots , \alpha ^{k}(x_n)])\nonumber \\&=\sum _{i=1}^n\sum _{j<i}^n\varepsilon (d_1, X_{i})\varepsilon (d_2, X_{j}) ([\alpha ^{k+s}(x_1), \dots , D_2^{(j-1)}(x_j),\dots , \alpha ^{k+s}(x_{i-1}), D_1^{(i-1)}\alpha ^{s}(x_i), \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha ^{k+s}(x_{i+1}), \dots , \alpha ^{k+s}(x_n)])\nonumber \\&+\sum _{i=1}^n\varepsilon (d_1+d_2, X_{i}) ([\alpha ^{k+s}(x_1), \dots , \alpha ^{k+s}(x_{i-1}), D_2^{(i-1)}D_1^{(i-1)}(x_i), \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha ^{k+s}(x_{i+1}), \dots , \alpha ^{k}(x_n)])\nonumber \\&+\sum _{i=1}^n\sum _{j>i}^n\varepsilon (d_1, X_{i})\varepsilon (d_2, d_1+X_{j}) ([\alpha ^{k+s}(x_1), ,\dots , \alpha ^{k+s}(x_{i-1}), D_1^{(i-1)}\alpha ^{s}(x_i), \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \,\,\, \alpha ^{k+s}(x_{i+1}), \dots , D_2^{(j-1)}(x_j), \dots , \alpha ^{k+s}(x_n)])\nonumber . \end{aligned}$$

It follows that

$$\begin{aligned}&([D_1^{(n)}, D_2^{(n)}])([x_1, \dots , x_n])=(D_1^{(n)}D_2^{(n)}-\varepsilon (d_1, d_2)D_2^{(n)}(D_1^{(n)})([x_1, \dots , x_n]))=\nonumber \\&=\sum _{i=1}^n\varepsilon (d_1+d_2, X_{i}) ([\alpha ^{k+s}(x_1), \dots , \alpha ^{k+s}(x_{i-1}), \nonumber \\&\qquad \qquad (D_1^{(i-1)}D_2^{(i-1)}-\varepsilon (d_1, d_2)D_2^{(i-1)}D_1^{(i-1)}](x_i), \alpha ^{k+s}(x_{i+1}), \dots , \alpha ^{k+s}(x_n)])\nonumber \\&=\sum _{i=1}^n\varepsilon (d_1+d_2, X_{i}) ([\alpha ^{k+s}(x_1), \dots , \alpha ^{k+s}(x_{i-1}), \nonumber \\&\qquad \qquad [D_1^{(i-1)}, D_2^{(i-1)}](x_i), \alpha ^{k+s}(x_{i+1}), \dots , \alpha ^{k+s}(x_n)])\nonumber . \end{aligned}$$

Thus we obtain that \([D_1, D_2]\in GDer_{\alpha ^{k+s}}(L)\).

  1. (1b)

    That QDer(L) is a color Hom-subalgebra of \((End (L), [\cdot , \cdot ], \omega )\) is proved in the similar way.

  2. (1c)

    Let \(D_1\in C_{\alpha ^{k}}(L)\) and \(D_2\in C_{\alpha ^{s}}(L)\). Then

    $$\begin{aligned}&\omega (D_1)([x_1, x_2, \dots , x_n])=\alpha D_1([x_1, x_2, \dots , x_n])\nonumber \\&=\varepsilon (d_1, X_i)\alpha ([\alpha ^k(x_1), \alpha ^k(x_2), \dots , D_1(x_i), \dots , \alpha ^k(x_n])\nonumber \\&=\varepsilon (d_1, X_i)[\alpha ^{k+1}(x_1), \alpha ^{k+1}(x_2), \dots , D_1(x_i), \dots , \alpha ^{k+1}(x_n])\nonumber . \end{aligned}$$

    Thus \(\omega (D)\in C_{\alpha ^{k+1}}(L)\). Moreover,

    $$\begin{aligned}&[D_1, D_2]([x_1, \dots , x_n])=D_1D_2([x_1, \dots , x_n])- \varepsilon (d_1, d_2)D_2D_1([x_1, \dots , x_n])\nonumber \\&=\varepsilon (d_2, X_i)D_1[\alpha ^k(x_1), \alpha ^k(x_2), \dots , D_2(x_i), \dots , \alpha ^k(x_n)]\nonumber \\&-\varepsilon (d_1, d_2)\varepsilon (d_1, X_i)D_2[\alpha ^s(x_1), \alpha ^s(x_2), \dots , D_1(x_i), \dots , \alpha ^s(x_n)]\nonumber \\&=\varepsilon (d_1+d_2, X_i)[\alpha ^{k+s}(x_1), \alpha ^{k+s}(x_2), \dots ,D_1 D_2(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&-\varepsilon (d_1+d_2, X_i)[\alpha ^{k+s}(x_1), \alpha ^{k+s}(x_2), \varepsilon (d_1, d_2)\dots ,D_2 D_1(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (d_1+d_2, X_i)[\alpha ^{k+s}(x_1), \alpha ^{k+s}(x_2), \dots , [D_1 D_2](x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber . \end{aligned}$$

    So, \([D_1, D_2]\in C_{\alpha ^{k+s}}(L)\) and finally \([D_1, D_2]\in C(L)\).

  3. (2)

    By the same method as previously one can show that \(\omega (D)\in ZDer_{\alpha ^{k+1}}(L)\) and \([D_1, D_2]\in ZDer_{\alpha ^{k+s}}(L)\), where \(D_1\in ZDer_{\alpha ^{k}}(L)\) and \(D_2\in Der_{\alpha ^{s}}(L)\). \(\square \)

Proposition 7.7

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra.

  1. (1)

    If \(\varphi \in C(L)\) and \(D\in Der(L)\), then \(\varphi D\) is a derivation i.e.

    $$C(L)\cdot Der(L)\subseteq Der(L).$$
  2. (2)

    Any element of centroid is a quasiderivation i.e.

    $$C(L)\subseteq QDer(L).$$

Proof

(1) For any \(x_1, \dots , x_n\in \mathcal {H}(L)\),

$$\begin{aligned} \varphi D([x_1, \dots , x_n])= & {} \sum _{i=1}^n\varepsilon (d, X_i)\varphi ([\alpha ^k(x_1), \dots , D(x_i), \dots , \alpha ^k(x_n)])\nonumber \\= & {} \sum _{i=1}^n\varepsilon (d, X_i)\varepsilon (\varphi , X_i)[\alpha ^{k+s}(x_1), \dots , \varphi D(x_i), \dots , \alpha ^{k+s}(x_n)])\nonumber \\= & {} \sum _{i=1}^n\varepsilon (d+\varphi , X_i)[\alpha ^{k+s}(x_1), \dots , \varphi D(x_i), \dots , \alpha ^{k+s}(x_n)])\nonumber . \end{aligned}$$

Thus \(\varphi D\) is an \(\alpha ^{k+s}\)-derivation of degree \(d+\varphi \).

(2) Let D be an \(\alpha ^{k}\)-centroid, then for any \(x_1, \dots , x_n\in \mathcal {H}(L),\)

$$\begin{aligned} D([x_1, \dots , x_n])=\varepsilon (d, X_i)[\alpha ^k(x_1), \dots D(x_i), \dots , \alpha ^k(x_n)], i=1, 2, \dots , n.\qquad \quad \end{aligned}$$
(7.14)

It follows that

$$\begin{aligned} \sum _{i=1}^n\varepsilon (d, X_i)[\alpha ^k(x_1), \dots D(x_i), \dots , \alpha ^k(x_n)]=nD([x_1, \dots , x_n]). \end{aligned}$$
(7.15)

It suffises to take \(D'=nD\). \(\square \)

Lemma 7.2

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) be a multiplicative n-Hom-Lie color algebra. Then

  1. (1)

    The \(\varepsilon \)-commutator of two elements of quasicentroid is a quasiderivation i.e.

    $$[QC(L), QC(L)]\subseteq QDer(L).$$
  2. (2)

    \(QDer(L)+QC(L)\subseteq GDer(L)\).

Proof

For any \(x_1, x_2, \dots , x_n\in \mathcal {H}(L)\),

  1. (1)

    Let \(D_1\in QC_{\alpha ^k}(L)\) and \(D_2\in QC_{\alpha ^s}(L)\). We have, on the one hand

    $$\begin{aligned}&[D_1D_2(x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1, D_2+X_i)[D_2(\alpha ^{k}(x_1)), \alpha ^{k+s}(x_2), \dots , D_1(\alpha ^{s}(x_i)), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1, D_2+X_i)\varepsilon (D_2, X_i)[\alpha ^{k+s}(x_1), \dots , D_2D_1(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1, D_2)\varepsilon (D_1+D_2, X_i)[\alpha ^{k+s}(x_1), \dots , D_2D_1(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber . \end{aligned}$$

    On the other hand,

    $$\begin{aligned}&[D_1D_2(x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_n)]=\nonumber \\&=\varepsilon (D_1, D_2+x_1)[D_2(\alpha ^{k}(x_1)), D_1(\alpha ^{s}(x_2)), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1, D_2+x_1)\varepsilon (D_2, D_1+X_i) \nonumber \\&\qquad \qquad \quad \qquad \,\,\,\, [\alpha ^{k+s}(x_1), D_1(\alpha ^{s}(x_2)), \dots , D_2(\alpha ^{k}(x_i)), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1, x_1)\varepsilon (D_2, X_i)\varepsilon (x_1, D_1) \nonumber \\&[D_1(\alpha ^{s}(x_1)), \alpha ^{k+s}(x_2), \dots , D_2(\alpha ^{k}(x_i)), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_2, X_i)\varepsilon (D_1, X_i)[\alpha ^{k+s}(x_1), \dots , D_1D_2(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=\varepsilon (D_1+D_2, X_i)[\alpha ^{k+s}(x_1), \dots , D_1D_2(x_i), \dots , \alpha ^{k+s}(x_n)],\nonumber \end{aligned}$$

    and so

    $$\begin{aligned}&\varepsilon (D_1+D_2, X_i)[\alpha ^{k+s}(x_1), \dots , [D_1, D_2](x_i), \dots , \alpha ^{k+s}(x_n)]=\nonumber \\&=\varepsilon (D_1+D_2, X_i)\Big ([\alpha ^{k+s}(x_1), \dots , D_1D_2(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&\quad -\varepsilon (D_1, D_2)[\alpha ^{k+s}(x_1), \dots , D_2D_1(x_i), \dots , \alpha ^{k+s}(x_n)]\Big )=0.\nonumber \end{aligned}$$

    It follows that

    $$\begin{aligned} \sum _{i=1}^n\varepsilon (D_1+D_2, X_i)[\alpha ^{k+s}(x_1), \dots , [D_1, D_2](x_i), \dots , \alpha ^{k+s}(x_n)]=0\nonumber . \end{aligned}$$

    Therefore \(D'\equiv 0\), and \([D_1, D_2]\in QDer(L)\).

  2. (2)

    Let \(D_1\in QDer_{\alpha ^k}(L)\) and \(D_2\in QC_{\alpha ^k}(L)\) with \(|D_1|=|D_2|\). Then there exists \(D'_1\in End(L)\) such that

    $$\begin{aligned}&D'_1([x_1, \dots , x_n]) =\sum _{i=1}^n \varepsilon (D_1, X_i)[\alpha ^{k}(x_1), \dots , D_1(x_i), \dots , \alpha ^{k}(x_n)]\nonumber \\&=[D_1(x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_n)]+\varepsilon (D_1, x_1)[\alpha ^{k}(x_1), D_1(x_2), \dots , \alpha ^{k}(x_n)]\nonumber \\&\qquad +\sum _{i=3}^n\varepsilon (D_1, X_i)[\alpha ^{k}(x_1), \dots , D_1(x_i), \dots , \alpha ^{k}(x_n)]\nonumber \\&=[(D_1+D_2)(x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_n)]-[D_2(x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_n)]\nonumber \\&\qquad +\varepsilon (D_1, x_1)[\alpha ^{k}(x_1), D_1(x_2), \dots , \alpha ^{k}(x_n)] \nonumber \\&\qquad + \sum _{i=3}^n\varepsilon (D_1, X_i)[\alpha ^{k}(x_1), \dots , D_1(x_i), \dots , \alpha ^{k}(x_n)]\nonumber \\&=[(D_1+D_2)(x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_n)]-\varepsilon (D_2, x_1)[\alpha ^{k}(x_1), D_2(x_2), \dots , \alpha ^{k}(x_n)]\nonumber \\&\quad +\varepsilon (D_1, x_1)[\alpha ^{k}(x_1), D_1(x_2), \dots , \alpha ^{k}(x_n)] \nonumber \\&\qquad + \sum _{i=3}^n\varepsilon (D_1, X_i)[\alpha ^{k}(x_1), \dots , D_1(x_i), \dots , \alpha ^{k}(x_n)]\nonumber \\&=[(D_1+D_2)(x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_n)] \nonumber \\&\qquad +\varepsilon (D_2, x_1)[\alpha ^{k}(x_1), (D_1-D_2)(x_2), \dots , \alpha ^{k}(x_n)] \nonumber \\&\qquad +\sum _{i=3}^n\varepsilon (D_1, X_i)[\alpha ^{k}(x_1), \dots , D_1(x_i), \dots , \alpha ^{k}(x_n)]\nonumber . \end{aligned}$$

The conclusion follows by taking

$$ D^{(n)}=D'_1,\quad D=D_1+D_2,\quad D'=D_1-D_2,\quad D^{(i)}=D_1,\quad 2\le i\le n-1.$$

This proved that \(D_1+D_2\in GDe(L)\). \(\square \)

Proposition 7.8

If \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is a multiplicative n-Hom-Lie color algebra, then

$$QC(L)+[QC(L), QC(L)]$$

is a color Hom-subalgebra of GDer(L).

Proof

It follows from Lemma 7.2 by using the same arguments as in Proposition 2.4 in [41]. \(\square \)

Proposition 7.9

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is a multiplicative n-Hom-Lie color algebra such that \(\alpha \) be a surjective mapping, then \([C(L), QC(L)]\subseteq Hom(L, Z(L))\). Moreover, if \(Z(L)=\{0\}\), then \([C(L), QC(L)]=\{0\}\).

Proof

Let \(D_1\in C_{\alpha ^k}(L)\), \(D_2\in QC_{\alpha ^s}(L)\) and \(x_1, \dots , x_n\in \mathcal {H}(L)\). Since \(\alpha \) is surjective, for any \(y'_i\in L\), there exists \(y_i\in L\) such that \(y'_i=\alpha ^{k+s}(y_i), i= 2, \dots , n\). Thus

$$\begin{aligned}&[[D_1, D_2](x_1), y'_2, \dots , y'_n]=\nonumber \\&=[[D_1, D_2](x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)]\nonumber \\&=[D_1D_2(x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)] \nonumber \\&\qquad -\varepsilon (d_1, d_2)[D_2D_1(x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)]\nonumber \\&=D_1([D_2(x_1), \alpha ^{s}(y_2), \dots , \alpha ^{s}(y_n)]) \nonumber \\&\qquad -\varepsilon (d_1, d_2)\varepsilon (d_2,x_1+ d_1)[D_1\alpha ^{s}(x_1), D_2\alpha ^{k}(y_2), \dots , \alpha ^{k+s}(y_n)]\nonumber \\&=D_1([D_2(x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)]) \nonumber \\&\qquad -\varepsilon (d_2, x_1)D_1[\alpha ^{s}(x_1), \alpha ^{s}D_2(y_2), \dots , \alpha ^{s}(y_n)]\nonumber \\&=D_1\Big ([D_2(x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)]) \nonumber \\&\qquad -\varepsilon (d_2, x_1)[\alpha ^{s}(x_1), \alpha ^{s}D_2(y_2), \dots , \alpha ^{s}(y_n)]\Big )\nonumber \\&=D_1\Big ([D_2(x_1), \alpha ^{k+s}(y_2), \dots , \alpha ^{k+s}(y_n)]) -[D_2(x_1), \alpha ^{s}(y_2), \dots , \alpha ^{s}(y_n)]\Big )=0.\nonumber \end{aligned}$$

Hence, \([D_1, D_2](x_1)\in Z(L)\), and \([D_1, D_2]\in Hom(L, Z(L))\). Furthermore, if \(Z(L)=\{0\}\), we know that \([C(L), QC(L)]=\{0\}\). \(\square \)

Proposition 7.10

Let \((L, [\cdot , \dots , \cdot ], \varepsilon , \alpha )\) is a multiplicative n-Hom-Lie color algebra with surjective twisting \(\alpha \) and H be a graded subset of L. Then

  1. (i)

    \(Z_L(H)\) is invariant under C(L).

  2. (ii)

    Every perfect color Hom-ideal of L is invariant under C(L).

Proof

  1. (i)

    For any \(\varphi \in C(L)\) and \(x\in Z_L(H)\), by (7.4), we have

    $$\begin{aligned} 0=\varphi ([x, H, L, \dots , L])=[\varphi (x), \alpha ^k(H), \alpha ^k(L), \dots , \alpha ^k(L)]=[\varphi (x), H, L, \dots , L].\nonumber \end{aligned}$$

    Therefore \(\varphi (x)\in Z_L(H)\), which implies that \(Z_L(H)\) is invariant under C(L).

  2. (ii)

    Let H be a perfect color Hom-ideal of L. Then \(H^1=H\), and so for any \(x\in H\) there exist \(x_1^i, x_2^i, \dots , x_n^i\in H\) with \(0<i<\infty \) such that \(x{=}\sum _i[x_1^i, x_2^i, \dots , x_n^i]\). If \(\varphi \in C(L)\), then

    $$\begin{aligned} \varphi (x)= & {} \varphi \left( \sum _i[x_1^i, x_2^i, \dots , x_n^i]\right) =\sum _i\varphi ([x_1^i, x_2^i, \dots , x_n^i]) \nonumber \\= & {} \sum _i[\varphi (x_1^i), \alpha ^k(x_2^i), \dots , \alpha ^k(x_n^i)])\in H. \end{aligned}$$

    This shows that H is invariant under C(L). \(\square \)

Proposition 7.11

If the characteristic of \(\mathbb {K}\) is 0 or not a factor of \(n-1\). Then

$$ZDer(L)=C(L)\cap Der(L).$$

Proof

If \(\varphi \in C(L)\cap Der(L)\), then by (7.6) we have

$$\varphi ([x_1, \dots , x_n])=\sum _{i=1}^n\varepsilon (d, X_i)[\alpha ^k(x_1), \dots , \varphi (x_i), \dots , \alpha ^k(x_n)],$$

and by (), for \(i=1, 2, \dots , n\),

$$\varepsilon (d, X_i)[\alpha ^k(x_1), \dots , \varphi (x_i), \dots , \alpha ^k(x_n)]=\varphi ([x_1, \dots , x_n]).$$

Thus

$$\varphi ([x_1, \dots , x_n])=n \varphi ([x_1, \dots , x_n])$$

The characteristic of \(\mathbb {K}\) being 0 or not a factor of \(n-1\), we have

$$0=\varphi ([x_1, \dots , x_n])=\varepsilon (d, X_i)[\alpha ^k(x_1), \dots , \varphi (x_i), \dots , \alpha ^k(x_n)], i=1, 2, \dots , n.$$

Which means that \(\varphi \in ZDer(L)\).

Conversly, let \(\varphi \in ZDer(L)\), Then

$$\varphi ([x_1, \dots , x_n])=\varepsilon (d, X_i)[\alpha ^k(x_1), \dots , \varphi (x_i), \dots , \alpha ^k(x_n)]=0, 1\le i\le n$$

and thus \(\varphi \in C(L)\cap Der(L)\). Therefore \(ZDer(L)=C(L)\cap Der(L)\). \(\square \)

Proposition 7.12

Let L be an n-Hom-Lie color algebra. For any \(D\in Der(L)\) and \(\varphi \in C(L)\)

  1. (1)

    Der(L) is contained in the normalizer of C(L) in End(L) i.e.

    $$[Der(L), C(L)]\subseteq C(L).$$
  2. (2)

    QDer(L) is contained in the normalizer of QC(L) in End(L) i.e.

    $$[QDer(L), QC(L)]\subseteq QC(L).$$

Proof

(1) For any \(D\in Der(L), \varphi \in C(L)\) and \(x_1, x_2, \dots , x_n\in \mathcal {H}(L)\),

$$\begin{aligned}&D\varphi ([x_1, \dots , x_n])=D([\varphi (x_1), \alpha ^{k}(x_2), \dots , \alpha ^{k}(x_i), \dots , \alpha ^{k}(x_n)])\nonumber \\&=[D\varphi (x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&\quad +\sum _{i=2}^n\varepsilon (d, \varphi + X_i)[\alpha ^{s}\varphi (x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k}D(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&=[D\varphi (x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&\quad +\sum _{i=2}^n\varepsilon (d,\varphi + X_i)\varepsilon (\varphi , X_i)([\alpha ^{k+s}(x_1), \alpha ^{k+s}(x_2), \dots , \varphi D(x_i), \dots , \alpha ^{k+s}(x_n)])\nonumber \\= & {} [D\varphi (x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&\quad +\varepsilon (d,\varphi )\sum _{i=2}^n\varepsilon (d+\varphi , X_i)([\alpha ^{k+s}(x_1), \alpha ^{k+s}(x_2), \dots , \varphi D(x_i), \dots , \alpha ^{k+s}(x_n)])\nonumber \\= & {} [D\varphi (x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)]\nonumber \\&\quad +\varepsilon (d,\varphi )\Big (\varphi D[x_1, x_2, \dots , x_i, \dots , x_n]\nonumber \\&\quad -[\varphi D(x_1), \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)] \Big )\nonumber . \end{aligned}$$

Then we get

$$\begin{aligned}&(D\varphi -\varepsilon (d, \varphi )\varphi D)([x_1, \dots , x_n]) \nonumber \\&\qquad =[(D\varphi -\varepsilon (d, \varphi )\varphi D)(x_1), \dots , \alpha ^{k+s}(x_2), \dots , \alpha ^{k+s}(x_i), \dots , \alpha ^{k+s}(x_n)])\nonumber , \end{aligned}$$

that is \([D, \varphi ]=D\varphi -\varepsilon (d, \varphi )\varphi D\in C(L)\).

(2) It is proved by using a similar method. \(\square \)

Proposition 7.13

Let L be an n-Hom-Lie color algebra. For any \(D\in Der(L)\) and \(\varphi \in C(L)\)

  1. (1)

    \(D\varphi \) is contained in C(L) if and only if \(\varphi D\) is a central derivation of L.

  2. (2)

    \(D\varphi \) is a derivation of L if and only if \([D, \varphi ]\) is a central derivation of L.

Proof

(1) From Proposition 7.12, \(D\varphi \) is an element of C(L) if and only if \(\varphi D\in Der(L)\cap C(L)\). Thanks to Proposition 7.11, we get the result.

(2) The conclusion follows from (1), Propositions 7.11 and 7.12. \(\square \)

If A is a commutative associative algebra and L is an n-Hom-Lie color algebra, the n-Hom-Lie algebra \(A\otimes L\) (Theorem 7.3) is called the tensor product n-Hom-Lie color algebra of A and L. For \(f\in End(A)\) and \(\varphi \in End(L)\) let \(f\otimes \varphi : A\otimes L\rightarrow A\otimes L\) be given by \(f\otimes \varphi (a\otimes x)=f(a)\otimes \varphi (x)\), for \(a\in A, x\in L\). Then \(f\otimes \varphi \in End(A\otimes L)\).

Recall that if A is a commutative associative algebra, the centroid C(A) of A is by definition

$$C(A)=\{f\in End(A) \mid f(ab)=f(a)b=af(b), \forall a, b\in A\}.$$

We now state the following

Proposition 7.14

By the above notation, we have

$$C(A)\otimes C(L)\subseteq C(A\otimes L).$$

Proof

For any \(a_i\in A, x_i\in \mathcal {H}(L), 1\le i\le n\), and any \(f\in C(A)\) and \(\varphi \in C(L),\)

$$\begin{aligned}&(f\otimes \varphi )[a_1\otimes x_1, \dots , a_n\otimes x_n]=(f\otimes \varphi )(a_1\dots a_n)\otimes [x_1, \dots , x_n]\nonumber \\&=f(a_1\dots a_n)\otimes \varphi [x_1, \dots , x_n]\nonumber \\&=\varepsilon (\varphi , X_i)a_1\dots f(a_i)\dots a_n\otimes [\alpha ^{k}(x_1), \dots , \varphi (x_i), \dots , \alpha ^{k}(x_n)]\nonumber \\&=\varepsilon (\varphi , X_i)[a_1\otimes \alpha ^{k}(x_1)\dots f(a_i)\otimes \varphi (x_i), \dots , a_n\otimes \alpha ^{k}(x_n)]\nonumber \\&=\varepsilon (\varphi , X_i)[\alpha '^{k}(a_1\otimes x_1)\dots (f\otimes \varphi )( a_i\otimes x_i), \dots , \alpha '^{k}(a_n\otimes x_n)]\nonumber . \end{aligned}$$

Therefore, \(f\otimes \varphi \in C(A\otimes L)\). \(\square \)