Keywords

MSC 2010 Classification:

13.1 Introduction

Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have been intensively investigated in the literature recently. Hom-algebras are generalizations of algebras obtained by a twisting map, which have been introduced for the first time in [6] by Makhlouf and Silvestrov. The associativity is replaced by Hom-associativity, Hom-coassociativity for a Hom-coalgebra can be considered in a similar way.

In [9, 12], Yau introduced and characterized the concept of module Hom-algebras as a twisted version of usual module algebras and the dual version (i.e. comodule Hom-coalgebras) was studied by Zhang in [13]. Based on Yau’s definition of module Hom-algebras, Ma, Li and Yang in [3] constructed smash product Hom-Hopf algebra \((A\natural H,\alpha \otimes \beta )\) generalizing the Molnar’s smash product (see [4]), and gave the cobraided structure (in the sense of Yau’s definition in [11]) on \((A\natural H,\alpha \otimes \beta )\), and also considered the case of twist tensor product Hom-Hopf algebra. Makhlouf and Panaite defined and studied a class of Yetter-Drinfeld modules over Hom-bialgebras in [5] via the “twisting principle” introduced by Yau for Hom-algebras and since then extended to various Hom-type algebras. In [2], the authors introduced the notion of Hom-Yetter-Drinfeld category \(_H^H{\mathcal {YD}}\) via Radford biproduct Hom-Hopf algebra, and proved that the Hom-Yetter-Drinfeld modules can provide solutions of the Hom-Yang-Baxter equation (in the sense of Yau’s definition in [10,11,12]) and \(_H^H{\mathcal {YD}}\) is a braided tensor category.

It is well-known that the category \(_H{\mathcal {M}}\) (or \(^H{\mathcal {M}}\)) of left H-modules (or comodules) is a braided tensor subcategory of \(_H^H{\mathcal {YD}}\), where \((H, \mathrm {R} ~(\hbox {or}\,\sigma ))\) is a quasitriangular (or cobraided) Hopf algebra. Radford biproduct plays an important role in the lifting method for the classification of finite dimensional pointed Hopf algebras. In [4], Ma and Wang generalized the Radford biproduct to the twist tensor biproduct.

The main purpose of this article is to consider the above results in the Hom-setting.

This article is organized as follows. In Sect. 13.2, we recall some definitions and results which will be used later. In Sect. 13.3, we construct a subcategory of the Hom-Yetter-Drinfeld category via quasitriangular Hom-Hopf algebra (see Theorem 13.1). On the other hand, we give a second braided tensor structure on \(_H^H{\mathcal {YD}}\) (see Theorem 13.3). Yau’s results in [10, 11] can be obtained as a corollary (see Corollaries 13.1 and 13.2). In [2], we defined the Hom-Yetter-Drinfeld module by Radford biproduct Hom-Hopf algebra. In Sect. 13.4, we consider a generalized version of Radford’s biproduct Hom-Hopf algebra, named twisted tensor biproduct Hom-Hopf algebra (see Theorems 13.6 and 13.7). And two nontrivial examples are given (see Examples 13.1 and 13.2).

13.2 Preliminaries

Throughout this paper, we follow the definitions and terminologies in [1,2,3, 10, 11, 13], with all algebraic systems supposed to be over the field K. Given a K-space M, we write \(id_M\) for the identity map on M.

We now recall some useful definitions throughout this paper. We point out that we will be using in the special contexts we consider a simplified terminology for involved Hom-algebra structures just for convenience of exposition in this article.

Definition 13.1

A Hom-algebra Hom-algebra, or more exactly, a unital multiplicative Hom-associative algebra, is a quadruple \((A,\mu ,1_A,\alpha )\) (abbr. \((A,\alpha )\)), where A is a K-linear space, \(\mu : A\otimes A \longrightarrow A\) is a K-linear map, \(1_A \in A\) and \(\alpha \) is an automorphism of A, such that

$$\begin{aligned}&(HA1) \, \, \alpha (aa')=\alpha (a)\alpha (a');~~\alpha (1_A)=1_A,\\&(HA2) \,\, \alpha (a)(a'a'')=(aa')\alpha (a'');~~a1_A=1_Aa=\alpha (a) \end{aligned}$$

are satisfied for \(a, a', a''\in A\). Here we use the notation \(\mu (a\otimes a')=aa'\).

Let \((A, \alpha )\) and \((B, \beta )\) be two Hom-algebras. Then \((A\otimes B, \alpha \otimes \beta )\) is a Hom-algebra (called tensor product Hom-algebra) with the multiplication \((a\otimes b)(a'\otimes b')=aa'\otimes bb'\) and unit \(1_A\otimes 1_B\).

Definition 13.2

A Hom-coalgebra is a quadruple \((C,\varDelta ,\varepsilon _C,\beta )\) (abbr. \((C,\beta )\)), where C is a K-linear space, \(\varDelta : C \longrightarrow C\otimes C\), \(\varepsilon _C: C\longrightarrow K\) are K-linear maps, and \(\beta \) is an automorphism of C, such that

$$\begin{aligned}&(HC1)\,\, \beta (c)_1\otimes \beta (c)_2=\beta (c_1)\otimes \beta (c_2);~~\varepsilon _C\circ \beta =\varepsilon _C\\&(HC2) \,\, \beta (c_{1})\otimes c_{21}\otimes c_{22}=c_{11}\otimes c_{12}\otimes \beta (c_{2});~~\varepsilon _C(c_1)c_2=c_1\varepsilon _C(c_2)=\beta (c) \end{aligned}$$

are satisfied for \(c \in A\). Here we use the notation \(\varDelta (c)=c_1\otimes c_2\) (summation implicitly understood).

Let \((C, \alpha )\) and \((D, \beta )\) be two Hom-coalgebras. Then \((C\otimes D, \alpha \otimes \beta )\) is a Hom-coalgebra (called tensor product Hom-coalgebra) with the comultiplication \(\varDelta (c\otimes d)=c_1\otimes d_1\otimes c_2\otimes d_2\) and counit \(\varepsilon _C\otimes \varepsilon _D\).

Definition 13.3

A Hom-bialgebra is a sextuple \((H,\mu ,1_H,\varDelta ,\varepsilon ,\gamma )\) (abbr. \((H,\gamma )\)), where \((H,\mu ,1_H,\gamma )\) is a Hom-algebra and \((H,\varDelta ,\varepsilon ,\gamma )\) is a Hom-coalgebra, such that \(\varDelta \) and \(\varepsilon \) are morphisms of Hom-algebras, i.e.

$$ \varDelta (hh')=\varDelta (h)\varDelta (h');~~\varDelta (1_H)=1_H\otimes 1_H, $$
$$ \varepsilon (hh')=\varepsilon (h)\varepsilon (h');~~\varepsilon (1_H)=1. $$

Furthermore, if there exists a linear map \(S: H\longrightarrow H\) such that

$$ S(h_1)h_2=h_1S(h_2)=\varepsilon (h)1_H~\hbox {and}~S(\gamma (h))=\gamma (S(h)), $$

then we call \((H,\mu ,1_H,\varDelta ,\varepsilon ,\gamma ,S)\)(abbr. \((H,\gamma ,S)\)) a Hom-Hopf algebra.

Let \((H,\gamma )\) and \((H',\gamma ')\) be two Hom-bialgebras. The linear map \(f: H\longrightarrow H'\) is called a Hom-bialgebra map if \(f\circ \gamma =\gamma '\circ f\) and at the same time f is a bialgebra map in the usual sense.

Definition 13.4

Let \((A,\beta )\) be a Hom-algebra. A left \((A,\beta )\)-Hom-module is a triple \((M,\triangleright ,\alpha )\), where M is a linear space, \(\triangleright : A\otimes M \longrightarrow M\) is a linear map, and \(\alpha \) is an automorphism of M, such that

$$\begin{aligned}&(HM1) \, \, \alpha (a\triangleright m)=\beta (a)\triangleright \alpha (m),\\&(HM2) \,\, \beta (a)\triangleright (a'\triangleright m)=(aa')\triangleright \alpha (m);~~ 1_A\triangleright m=\alpha (m) \end{aligned}$$

are satisfied for \(a, a' \in A\) and \(m\in M\).

Let \((M,\triangleright _M,\alpha _M)\) and \((N,\triangleright _N,\alpha _N)\) be two left \((A,\beta )\)-Hom-modules. Then a linear morphism \(f: M\longrightarrow N\) is called a morphism of left \((A,\beta )\)-Hom-modules if \(f(h\triangleright _M m)=h\triangleright _N f(m)\) and \(\alpha _M\circ f=f\circ \alpha _N\).

Definition 13.5

Let \((H,\beta )\) be a Hom-bialgebra and \((A,\alpha )\) a Hom-algebra. If \((A,\triangleright ,\alpha )\) is a left \((H,\beta )\)-Hom-module and for all \(h\in H\) and \(a, a'\in A\),

$$\begin{aligned}&(HMA1)\, \, \beta ^{2}(h)\triangleright (aa')=(h_1\triangleright a)(h_2\triangleright a'),\\&(HMA2) \,\, h\triangleright 1_A=\varepsilon _H(h)1_A, \end{aligned}$$

then \((A,\triangleright ,\alpha )\) is called an \((H,\beta )\) -module Hom-algebra.

Definition 13.6

Let \((C,\beta )\) be a Hom-coalgebra. A left \((C,\beta )\)-Hom-comodule is a triple \((M,\rho ,\alpha )\), where M is a linear space, \(\rho : M\longrightarrow C\otimes M\) (write \(\rho (m)=m_{-1}\otimes m_0,~\forall m\in M\)) is a linear map, and \(\alpha \) is an automorphism of M, such that

$$\begin{aligned}&(HCM1) \, \, \alpha (m)_{-1}\otimes \alpha (m)_{0}=\beta (m_{-1})\otimes \alpha (m_{0}),\\&(HCM2) \, \, \beta (m_{-1})\otimes m_{0-1}\otimes m_{00}{=} m_{-11}\otimes m_{-12}\otimes \alpha (m_{0});~~ \varepsilon _C(m_{-1})m_{0}=\alpha (m) \end{aligned}$$

are satisfied for all \(m\in M\).

Let \((M,\rho ^M,\alpha _M)\) and \((N,\rho ^N,\alpha _N)\) be two left \((C,\beta )\)-Hom-comodules. Then a linear map \(f: M\longrightarrow N\) is called a morphism of left \((C,\beta )\)-Hom-comodules if \(f(m)_{-1}\otimes f(m)_{0}=m_{-1}\otimes f(m_{0})\) and \(\alpha _M\circ f=f\circ \alpha _N\).

Definition 13.7

Let \((H,\beta )\) be a Hom-bialgebra and \((C,\alpha )\) a Hom-coalgebra. If \((C,\rho ,\alpha )\) is a left \((H,\beta )\)-Hom-comodule and for all \(c\in C\),

$$\begin{aligned}&(HCMC1) \,\, \beta ^{2}(c_{-1})\otimes c_{01}\otimes c_{02}=c_{1-1}c_{2-1}\otimes c_{10}\otimes c_{20},\\&(HCMC2) \,\, c_{-1}\varepsilon _C(c_0)=1_H\varepsilon _C(c), \end{aligned}$$

then \((C,\rho ,\alpha )\) is called an \((H,\beta )\)-comodule Hom-coalgebra.

Definition 13.8

Let \((H,\beta )\) be a Hom-bialgebra and \((C,\alpha )\) a Hom-coalgebra. If \((C,\triangleright ,\alpha )\) is a left \((H,\beta )\)-Hom-module and for all \(h\in H\) and \(c\in A\),

$$\begin{aligned}&(HMC1) \, \,m (h\triangleright c)_1\otimes (h\triangleright c)_2=(h_1\triangleright c_1)\otimes (h_2\triangleright c_2),\\&(HMC2) \, \, \varepsilon _C(h\triangleright c)=\varepsilon _H(h)\varepsilon _C(c), \end{aligned}$$

then \((C,\triangleright ,\alpha )\) is called an \((H,\beta )\)-module Hom-coalgebra.

Definition 13.9

Let \((H,\beta )\) be a Hom-bialgebra and \((A,\alpha )\) a Hom-algebra. If \((A,\rho ,\alpha )\) is a left \((H,\beta )\)-Hom-comodule and for all \(a, a'\in A\),

$$\begin{aligned}&(HCMA1) \, \, \rho (aa')=a_{-1}a'_{-1}\otimes a_{0}a'_{0},\\&(HCMA2) \, \, \rho (1_A)=1_H\otimes 1_A, \end{aligned}$$

then \((A,\rho ,\alpha )\) is called an \((H,\beta )\)-comodule Hom-algebra.

Definition 13.10

Let \((H,\beta )\) be a Hom-bialgebra and \((A,\triangleright ,\alpha )\) an \((H,\beta )\)-module Hom-algebra. Then \((A\natural H, \alpha \otimes \beta )\) (\(A\natural H=A\otimes H\) as a linear space) with the multiplication

$$ (a\otimes h)(a'\otimes h')=a(h_1\triangleright \alpha ^{-1}(a'))\otimes \beta ^{-1}(h_{2})h', $$

where \(a, a'\in A, h, h'\in H\), and unit \(1_A\otimes 1_H\) is a Hom-algebra, we call it smash product Hom-algebra denoted by \((A\natural H,\alpha \otimes \beta )\).

Definition 13.11

Let \((H, \beta )\) be a Hom-bialgebra, \((M,\triangleright _M, \alpha _M)\) a left \((H,\beta )\)-module with action \(\triangleright _M: H\otimes M\longrightarrow M, h\otimes m\mapsto h\triangleright _M m\) and \((M,\rho ^M, \alpha _M)\) a left \((H,\beta )\)-comodule with coaction \(\rho ^M: M\longrightarrow H\otimes M, m\mapsto m_{-1}\otimes m_{0}\). Then we call \((M,\triangleright _M\), \(\rho ^M, \alpha _M)\) a (left-left) Hom-Yetter-Drinfeld module over \((H,\beta )\) if the following condition holds:

$$ (HYD)~~~h_1\beta (m_{-1})\otimes (\beta ^3(h_2)\triangleright _M m_0)=(\beta ^2(h_1)\triangleright _M m)_{-1}h_2\otimes (\beta ^2(h_1)\triangleright _M m)_{0}, $$

where \(h\in H\) and \(m\in M\).

Definition 13.12

Let \((A,\mu _A,1_A,\alpha )\) and \((H,\mu _H,1_H,\beta )\) be two Hom-algebras, \(R: H\otimes A \longrightarrow A\otimes H\) a linear map such that for all \(a\in A, h\in H\),

$$ (R)~~~~~~~~\alpha (a)_R\otimes \beta (h)_R=\alpha (a_R)\otimes \beta (h_R). $$

Then \((A\natural _R H, \alpha \otimes \beta )\) (\(A\natural _R H=A\otimes H\) as a linear space) with the multiplication

$$ (a\otimes h)(b\otimes g)=a\alpha ^{-1}(b)_{R}\otimes \beta ^{-1}(h_{R})g, $$

where \(a, b\in A, h, g\in H\), and unit \(1_A\otimes 1_H\) becomes a Hom-algebra if and only if the following conditions hold:

$$\begin{aligned}&(RS1) \,\, a_{R}\otimes 1_{BR}=\alpha (a)\otimes 1_H;~~1_{AR}\otimes h_R=1_A\otimes \beta (h),\\&(RS2) \,\, \alpha (a)_R\otimes (hg)_R=a_{Rr}\otimes \beta ^{-1}(\beta (h)_r)g_R,\\&(RS3) \,\, \alpha ((ab)_R)\otimes \beta (h)_R=\alpha (a_R)\alpha (b)_r\otimes h_{Rr}, \end{aligned}$$

where \(a, b\in A, h, g\in H\). We call this Hom-algebra R-smash product Hom-algebra and denote it by \((A\natural _R H,\alpha \otimes \beta )\).

Definition 13.13

Let \((C,\varDelta _C,\varepsilon _C,\alpha )\) and \((H,\varDelta _H,\varepsilon _H,\beta )\) be two Hom-coalgebras, \(T: C\otimes H \longrightarrow H\otimes C\) (write \(T(c\otimes h)=h_T\otimes c_T, \forall c\in C, h\in H\)) a linear map such that for all \(c\in C, h\in H\),

$$ (T)~~~~~~~\alpha (c)_T\otimes \beta (h)_T=\alpha (c_T)\otimes \beta (h_T). $$

Then \((C\diamond _T H, \alpha \otimes \beta )\) (\(C\diamond _T H=C\otimes H\) as a linear space) with the comultiplication

$$ \varDelta _{C\diamond _T H}(c\otimes h)=c_1\otimes \beta ^{-1}(h_1)_T\otimes \alpha ^{-1}(c_{2T})\otimes h_2, $$

and counit \(\varepsilon _C\otimes \varepsilon _H\) becomes a Hom-coalgebra if and only if the following conditions hold:

$$\begin{aligned}&(TS1) \,\, \varepsilon _H(h_T)c_T=\varepsilon _H(h)\alpha (c);~~h_T\varepsilon _C(c_T)=\beta (h)\varepsilon _C(c),\\&(TS2) \, \, h_{T1}\otimes h_{T2}\otimes \alpha (c_T)=\beta (\beta ^{-1}(h_1)_T)\otimes h_{2t}\otimes c_{Tt},\\&(TS3) \,\, \beta (h_T)\otimes \alpha (c)_{T1}\otimes \alpha (c)_{T2}=h_{Tt}\otimes \alpha (c_1)_t\otimes \alpha (c_{2T}), \end{aligned}$$

where \(c\in C, h\in H\) and t is a copy of T. We call this Hom-coalgebra T-smash coproduct Hom-coalgebra and denote it by \((C\diamond _T H,\alpha \otimes \beta )\).

Definition 13.14

A quasitriangular Hom-Hopf algebra is a octuple \((H,\mu ,1_H, \varDelta ,\) \(\varepsilon ,S,\beta , \mathrm {R})\) (abbr.\((H,\beta ,\mathrm {R})\)) in which \((H,\mu ,1_H,\varDelta ,\varepsilon ,S,\beta )\) is a Hom-Hopf algebra and \(\mathrm {R}=\mathrm {R}^1\otimes \mathrm {R}^2 \in H\otimes H\), satisfying the following axioms (for all \(h\in H\) and \(\mathrm {R}=\mathrm {r}\)):

$$\begin{aligned}&(QHA1) \, \, \varepsilon (\mathrm {R}^1)\mathrm {R}^2=\mathrm {R}^1\varepsilon (\mathrm {R}^2)=1,\\&(QHA2)\, \, {\mathrm {R}^1}_{1}\otimes {\mathrm {R}^1}_{2}\otimes \beta (\mathrm {R}^2)=\beta (\mathrm {R}^1)\otimes \beta (\mathrm {r}^1)\otimes \mathrm {R}^2\mathrm {r}^2,\\&(QHA3) \, \, \beta (\mathrm {R}^1)\otimes {\mathrm {R}^2}_{1}\otimes {\mathrm {R}^2}_{2}=\mathrm {R}^1\mathrm {r}^1\otimes \beta (\mathrm {r}^2)\otimes \beta (\mathrm {R}^2),\\&(QHA4) \, \, h_2\mathrm {R}^1\otimes h_1\mathrm {R}^2=\mathrm {R}^1h_1\otimes \mathrm {R}^2h_2,\\&(QHA5)\, \, \beta (\mathrm {R}^1)\otimes \beta (\mathrm {R}^2)=\mathrm {R}^1\otimes \mathrm {R}^2. \end{aligned}$$

Definition 13.15

A cobraided Hom-Hopf algebra is a octuple \((H,\mu ,1_H, \varDelta ,\) \(\varepsilon ,S,\beta ,\sigma )\) (abbr.\((H,\beta ,\sigma )\)) in which \((H,\mu ,1_H,\varDelta ,\varepsilon ,S,\beta )\) is a Hom-Hopf algebra and \(\sigma \) is a bilinear form on H (i.e., \(\sigma \in Hom(H\otimes H, K)\)), satisfying the following axioms (for all \(h, g, l\in H\)):

$$\begin{aligned}&(CHA1)\, \, \sigma (h,1_H)=\sigma (1_H,h)=\varepsilon (h),\\&(CHA2)\,\, \sigma (hg,\beta (l))=\sigma (\beta (h),l_1)\sigma (\beta (g),l_2),\\&(CHA3)\,\, \sigma (\beta (h),gl)=\sigma (h_1,\beta (l))\sigma (h_2,\beta (g)),\\&(CHA4)\,\, \sigma (h_1,g_1)h_2g_2=g_1h_1\sigma (h_2,g_2),\\&(CHA5)\, \, \sigma (\beta (h),\beta (g))=\sigma (h,g). \end{aligned}$$

13.3 A Class of Braided Tensor Category

In this section, we construct a subcategory of the Hom-Yetter-Drinfeld category. On the other hand, we give a second braided tensor structure on \(_H^H{\mathcal {YD}}\). Yau’s results in [10, 11] can be obtained as a corollary.

First we recall the structure of Hom-Yetter-Drinfeld category in [2].

Proposition 13.1

([2]) Let \((H, \beta )\) be a Hom-bialgebra. Then the Hom-Yetter-Drinfeld category \(_H^H{\mathcal {YD}}\) is a braided tensor category, with tensor product defined by

$$ \triangleright _{M\otimes N}: H\otimes M\otimes N\longrightarrow M\otimes N, h\otimes m\otimes n\mapsto (h_1\triangleright _M m)\otimes (h_2\triangleright _N n), $$

and

$$ \rho ^{M\otimes N}: M\otimes N\longrightarrow H\otimes M\otimes N, m\otimes n\mapsto \beta ^{-2}(m_{-1}n_{-1})\otimes m_{0}\otimes n_{0}, $$

where \(h\in H\), \(m\in M\) and \(n\in N\), associativity constraints defined by

$$ a_{M,N,P}: (M\otimes N)\otimes P\longrightarrow M\otimes (N\otimes P),~~(m\otimes n)\otimes p\mapsto \alpha _M^{-1}(m)\otimes (n \otimes \alpha _P(p)), $$

where \(m\in M\), \(n\in N\) and \(p\in P\), the braiding defined by

$$ c_{M,N}: M\otimes N\longrightarrow N\otimes M,~~m\otimes n\mapsto (\beta ^2(m_{-1})\triangleright _N \alpha _{N}^{-1}(n))\otimes \alpha _M^{-1}(m_{0}) , $$

where \(m\in M\) and \(n\in N\) and the unit \((K,id_K)\).

Proposition 13.2

Let \((H, \beta , \mathrm {R})\) be a quasitriangular Hom-Hopf algebra and \((M,\alpha _M)\) a left \((H,\beta )\)-Hom-module with action \(\bar{\triangleright }_M: H\otimes M\longrightarrow M, h\otimes m\mapsto h\bar{\triangleright }_M m\). Define the linear map

$$ \bar{\rho }^{M}: M\longrightarrow H\otimes M, m\mapsto \beta ^{-3}(\mathrm {R}^2)\otimes (\mathrm {R}^1\bar{\triangleright }_M m), $$

Then \((M, \bar{\triangleright }_M, \bar{\rho }^M, \alpha _M)\) is a Hom-Yetter-Drinfeld module over \((H, \beta )\).

Proof

The condition (HCM1) is easy to be proved by (QHA5) and (HAM1). We check (HCM2) as follows.

$$\begin{aligned} \begin{array}{rcl} \hbox {LHS} &{}{\mathop {=}\limits ^{}}&{}\beta ^{-2}(\mathrm {R}^2)\otimes \beta ^{-3}(\mathrm {r}^2)\otimes \mathrm {r}^1\bar{\triangleright }_M(\mathrm {R}^1\bar{\triangleright }_M m)\\ &{}{\mathop {=}\limits ^{(QHA5)}}&{}\beta ^{-2}(\mathrm {R}^2)\otimes \beta ^{-2}(\mathrm {r}^2)\otimes \beta (\mathrm {r}^1)\bar{\triangleright }_M(\mathrm {R}^1\bar{\triangleright }_M m)\\ &{}{\mathop {=}\limits ^{(HM2)}}&{}\beta ^{-2}(\mathrm {R}^2)\otimes \beta ^{-2}(\mathrm {r}^2)\otimes (\mathrm {r}^1\mathrm {R}^1)\bar{\triangleright }_M m)\\ &{}{\mathop {=}\limits ^{(QHA3)}}&{}\beta ^{-3}({\mathrm {R}^2}_{1})\otimes \beta ^{-3}({\mathrm {R}^2}_{2})\otimes (\beta (\mathrm {R}^1)\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(HC1)(HM1)}}&{}\beta ^{-3}({\mathrm {R}^2})_{1}\otimes \beta ^{-3}({\mathrm {R}^2})_{2}\otimes \alpha _M(\mathrm {R}^1\bar{\triangleright }_M m)=\hbox {RHS}, \end{array} \end{aligned}$$

and it is obvious that \(\varepsilon _H(m_{-1})m_{0}=\alpha _M(m)\) by (QHA1), (HC1) and (HM1). Thus \((M, \bar{\rho }^M, \alpha _M)\) is a \((H, \beta )\)-Hom-comodule.

Next we check that the condition (HYD) holds.

$$\begin{aligned} \begin{array}{rcl} \hbox {LHS} &{}{\mathop {=}\limits ^{}}&{}h_1\beta ^{-2}(\mathrm {R}^2)\otimes (\beta ^3(h_2)\bar{\triangleright }_M (\mathrm {R}^1\bar{\triangleright }_M m))\\ &{}{\mathop {=}\limits ^{(HM2)}}&{}h_1\beta ^{-2}(\mathrm {R}^2)\otimes ((\beta ^2(h_2)\mathrm {R}^1)\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(HA1)(HC1)}}&{}\beta ^{-2}(\beta ^2(h)_1\mathrm {R}^2)\otimes ((\beta ^2(h)_2\mathrm {R}^1)\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(QHA4)}}&{}\beta ^{-2}(\mathrm {R}^2\beta ^2(h)_2)\otimes ((\mathrm {R}^1\beta ^2(h)_1)\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(HA1)(HC1)}}&{}\beta ^{-2}(\mathrm {R}^2)h_2\otimes ((\mathrm {R}^1\beta ^2(h_1))\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(QHA5)}}&{}\beta ^{-3}(\mathrm {R}^2)h_2\otimes ((\beta (\mathrm {R}^1)\beta ^2(h_1))\bar{\triangleright }_M \alpha _M(m))\\ &{}{\mathop {=}\limits ^{(HM2)}}&{}\beta ^{-3}(\mathrm {R}^2)h_2\otimes (\mathrm {R}^1\bar{\triangleright }_M (\beta ^2(h_1)\bar{\triangleright }_M m))=\hbox {RHS}, \end{array} \end{aligned}$$

finishing the proof.    \(\square \)

Proposition 13.3

Let \((H, \beta , \mathrm {R})\) be a quasitriangular Hom-Hopf algebra, \((M, \bar{\triangleright }_M, \bar{\rho }^M, \alpha _M)\) and \((N, \bar{\triangleright }_N, \bar{\rho }^N, \alpha _N)\) two Hom-Yetter-Drinfeld module over \((H, \beta )\) with the structure defined in Proposition 13.2. We regard \((M\otimes N, \bar{\triangleright }_{M\otimes N}, \alpha _M\otimes \alpha _N)\) as a left \((H,\beta )\)-Hom-module via the standard action

$$ h\bar{\triangleright }_{M\otimes N} (m\otimes n)=(h_1\bar{\triangleright }_M m)\otimes (h_2\bar{\triangleright }_N n) $$

and we regard \((M\otimes N, \bar{\triangleright }_{M\otimes N}, \bar{\rho }^{M\otimes N}, \alpha _M\otimes \alpha _N)\) as a Hom-Yetter-Drinfeld module over \((H, \beta )\) with the structure defined in Proposition 13.2. Then this Hom-Yetter-Drinfeld \((M\otimes N, \bar{\triangleright }_{M\otimes N}, \bar{\rho }^{M\otimes N}, \alpha _M\otimes \alpha _N)\) coincides with the Hom-Yetter-Drinfeld module defined in Proposition 13.1.

Proof

We only need to check that the two comodule structures on \(M\otimes N\) coincide, i.e., for all \(m\in M\) and \(n\in N\),

$$ \beta ^{-2}(m_{-1}n_{-1})\otimes (m_{0}\otimes n_{0})=\beta ^{-3}(\mathrm {R}^2)\otimes (\mathrm {R}^1\bar{\triangleright }_{M\otimes N} (m\otimes n)). $$

While

$$\begin{aligned} \begin{array}{rcl} \hbox {LHS} &{}{\mathop {=}\limits ^{}}&{}\beta ^{-2}(\beta ^{-3}(\mathrm {R}^2)\beta ^{-3}(\mathrm {r}^2))\otimes ((\mathrm {R}^1\bar{\triangleright }_{M} m)\otimes (\mathrm {r}^1\bar{\triangleright }_{N} n))\\ &{}{\mathop {=}\limits ^{(HA1)(QHA5)}}&{}\beta ^{-4}(\mathrm {R}^2\mathrm {r}^2)\otimes ((\beta (\mathrm {R}^1)\bar{\triangleright }_{M} m)\otimes (\beta (\mathrm {r}^1)\bar{\triangleright }_{N} n))\\ &{}{\mathop {=}\limits ^{(QHA2)}}&{}\beta ^{-3}(\mathrm {R}^2)\otimes (({\mathrm {R}^1}_1\bar{\triangleright }_{M} m)\otimes ({\mathrm {R}^1}_2\bar{\triangleright }_{N} n))=\hbox {RHS}, \end{array} \end{aligned}$$

finishing the proof.    \(\square \)

Proposition 13.4

([12]) Let \((H, \beta )\) be a Hom-bialgebra. If \((M,\bar{\triangleright }_{M},\alpha _M)\) and \((N,\bar{\triangleright }_{N},\alpha _N)\) are two \((H,\beta )\)-Hom-modules, then \((M\otimes N, \bar{\triangleright }_{M\otimes N}, \alpha _M\otimes \alpha _N)\) is a \((H,\beta )\)-Hom-module with the action defined by

$$ \bar{\triangleright }_{M\otimes N}: H\otimes (M\otimes N)\longrightarrow M\otimes N, ~~~~h\bar{\triangleright }_{M\otimes N} (m\otimes n)=(h_1\bar{\triangleright }_{M} m)\otimes (h_2\bar{\triangleright }_{N} n). $$

By Propositions 13.113.4, we have

Theorem 13.1

Let \((H, \beta , \mathrm {R})\) be a quasitriangular Hom-Hopf algebra. Denote by \(_H{\mathcal {M}}\) the category whose objects are left \((H,\beta )\)-Hom-modules \((M,\bar{\triangleright }_M,\alpha _M)\) and morphisms are morphisms of left-\((H,\beta )\)-Hom-modules. Then \(_H{\mathcal {M}}\) is a braided tensor subcategory of \(_H^H{\mathcal {YD}}\), with tensor product defined as in Proposition 13.4, associativity constraints defined by the formula \(a_{M,N,P}: (M\otimes N)\otimes P\longrightarrow M\otimes (N\otimes P),~~(m\otimes n)\otimes p\mapsto \alpha _M^{-1}(m)\otimes (n \otimes \alpha _P(p)),\) where \(m\in M\), \(n\in N\) and \(p\in P\), the braiding defined by \(c_{M,N}: M\otimes N\longrightarrow N\otimes M,~~m\otimes n\mapsto \alpha _{N}^{-1}(\mathrm {R}^2\bar{\triangleright }_N n)\otimes \alpha _{M}^{-1}(\mathrm {R}^1\bar{\triangleright }_M n),\) where \(m\in M\) and \(n\in N\) and the unit \((K,id_K)\).

Remark 13.1

Let \(m_{-1}\otimes m_{0}=\beta ^{-3}(\mathrm {R}^2)\otimes (\mathrm {R}^1\bar{\triangleright }_M m)\) in Proposition 13.1, we can get the the braiding in Theorem 13.1.

Proposition 13.5

([2]) Let \((H, \beta )\) be a Hom-bialgebra and \((M,\triangleright _M, \rho ^M, \alpha _M)\), \((N,\triangleright _N,\) \(\rho ^N, \alpha _N)\) \(\in _H^H{\mathcal {YD}}\). Define the linear map

$$ \tau _{M,N}: M\otimes N\longrightarrow N\otimes M, ~~m\otimes n\mapsto \beta ^{3}(m_{-1})\triangleright _N n \otimes m_{0}, $$

where \(m\in M\) and \(n\in N\). Then, we have \(\tau _{M,N}\circ (\alpha _M\otimes \alpha _N)=(\alpha _N\otimes \alpha _M)\circ \tau _{M,N}\) and, if \((P,\triangleright _P, \rho ^P, \alpha _P) \in _H^H{\mathcal {YD}}\), the maps \(\tau _{\underline{~~},~\underline{~~}}\) satisfy the Hom-Yang-Baxter equation:

$$ (\alpha _P\otimes \tau _{M,N})\circ (\tau _{M,P}\otimes \alpha _N)\circ (\alpha _M\otimes \tau _{N,P})=(\tau _{N,P}\otimes \alpha _M)\circ (\alpha _N\otimes \tau _{M,P})\circ (\tau _{M,N}\otimes \alpha _P). $$

Corollary 13.1

([10]) Let \((H, \beta , \mathrm {R})\) be a quasitriangular Hom-Hopf algebra and \((M,\bar{\triangleright }_M,\alpha _M)\) a left \((H,\beta )\)-Hom-module. Then the linear map

$$ B: M\otimes M\longrightarrow M\otimes M,~~~~B(m\otimes m')=(\mathrm {R}^2\bar{\triangleright }_M m')\otimes (\mathrm {R}^1\bar{\triangleright }_M m) $$

is a solution of the Hom-Yang-Baxter equation for \((M,\bar{\triangleright }_M,\alpha _M)\).

Proof

By Theorem 13.1, and let \(m_{-1}\otimes m_{0}=\beta ^{-3}(\mathrm {R}^2)\otimes (\mathrm {R}^1\bar{\triangleright }_M m)\) in Proposition 13.5, we can obtain the result.    \(\square \)

We have seen that Hom-modules over quasitriangular Hom-Hopf algebras become Hom-Yetter-Drinfeld modules. Similarly, Hom-comodules over cobraided Hom-Hopf algebras become Hom-Yetter-Drinfeld modules. In the following, we introduce another braided tensor category structure on Hom-Yetter-Drinfeld category.

Similar to [2, Lemma 4.4], we have

Proposition 13.6

With notations as above. Let \((H, \beta )\) be a Hom-bialgebra and \((M,\bullet _M, \psi ^M, \alpha _M)\), \((N,\bullet _N, \psi ^N, \alpha _N)\) \(\in _H^H{\mathcal {YD}}\). Define the linear maps

$$ \bullet _{M\otimes N}: H\otimes M\otimes N\longrightarrow M\otimes N, h\otimes (m\otimes n)\mapsto (\beta ^{-2}(h_1)\bullet _M m)\otimes (\beta ^{-2}(h_2)\bullet _N n), $$

and

$$ \psi ^{M\otimes N}: M\otimes N\longrightarrow H\otimes M\otimes N, m\otimes n\mapsto m_{-1}n_{-1}\otimes m_{0}\otimes n_{0}, $$

where \(h\in H\), \(m\in M\) and \(n\in N\). Then \((M\otimes N, \bullet _{M\otimes N}, \psi ^{M\otimes N}, \alpha _M\otimes \alpha _N)\) is a Hom-Yetter-Drinfeld module.

Theorem 13.2

Let \((H, \beta )\) be a Hom-bialgebra. Then the Hom-Yetter-Drinfeld category \(_H^H{\mathcal {YD}}\) is a braided tensor category, with tensor product defined as in Proposition 13.6, associativity constraints defined by

$$ \mathbf {a}_{M,N,P}: (M\otimes N)\otimes P\longrightarrow M\otimes (N\otimes P),~~(m\otimes n)\otimes p\mapsto \alpha _M(m)\otimes (n \otimes \alpha _P^{-1}(p)), $$

where \(m\in M\), \(n\in N\) and \(p\in P\), the braiding defined by

$$ \mathbf {c}_{M,N}: M\otimes N\longrightarrow N\otimes M,~~m\otimes n\mapsto (\beta ^2(m_{-1})\bullet _N \alpha _{N}^{-1}(n))\otimes \alpha _M^{-1}(m_{0}) , $$

where \(m\in M\) and \(n\in N\) and the unit \((K,id_K)\).

Proof

Same to [2, Theorem 4.7].    \(\square \)

Similar to Propositions 13.2, 13.3, we have

Proposition 13.7

Let \((H, \beta , \sigma )\) be a cobraided Hom-Hopf algebra.

(1) Let \((M, \alpha _M)\) a left \((H,\beta )\)-Hom-comodule with coaction \(\bar{\psi }^M: M\longrightarrow H\otimes M, m\mapsto m_{-1}\otimes m_{0}\). Define the linear map

$$ \bar{\bullet }_{M}: H\otimes M\longrightarrow M, h\bar{\bullet }_M m=\sigma (m_{-1},\beta ^{-3}(h))m_{0} $$

Then \((M, \bar{\bullet }_M, \bar{\psi }^M, \alpha _M)\) is a Hom-Yetter-Drinfeld module over \((H, \beta )\).

(2) Let \((N,\bar{\psi }^N, \alpha _N)\) be another left \((H,\beta )\)-Hom-comodule with coaction \(\bar{\psi }^N: M\longrightarrow H\otimes N, n\mapsto n_{-1}\otimes n_{0}\), regarded as a Hom-Yetter-Drinfeld module over \((H, \beta )\) with the structure defined as above, via the map \(\bar{\bullet }_N: H\otimes N\longrightarrow N, h\otimes n\mapsto h\bar{\bullet }_N n=\sigma (n_{-1},\beta ^{-3}(h))n_{0}\). We regard \((M\otimes N,\bar{\psi }^{M\otimes N}, \alpha _M\otimes \alpha _N)\) as a left \((H,\beta )\)-Hom-comodule via the standard coaction \(M\otimes N\longrightarrow H\otimes (M\otimes N),~~m\otimes n\mapsto m_{-1}n_{-1}\otimes (m_0\otimes n_0)\) and then we get \((M\otimes N, \bar{\bullet }_{M\otimes N}, \bar{\psi }^{M\otimes N}, \alpha _M\otimes \alpha _N)\) as a Hom-Yetter-Drinfeld module defined as above, then this Yetter-Drinfeld module coincides with the Hom-Yetter-Drinfeld module defined in Theorem 13.2.

Proposition 13.8

([12]) Let \((H, \beta )\) be a Hom-bialgebra. If \((M,\bar{\psi }^{M},\alpha _M)\) and \((N,\bar{\psi }^{N},\alpha _N)\) are two \((H,\beta )\)-Hom-comodules, then \((M\otimes N, \bar{\psi }^{M\otimes N}, \alpha _M\otimes \alpha _N)\) is a \((H,\beta )\)-Hom-comodule with the coaction defined by

$$ \bar{\psi }^{M\otimes N}: M\otimes N\longrightarrow H\otimes (M\otimes N), ~~~m\otimes n\mapsto m_{-1}n_{-1}\otimes (m_0\otimes n_0). $$

By Propositions 13.6, 13.7, 13.8 and Theorem 13.2, we have

Theorem 13.3

Let \((H, \beta , \sigma )\) be a cobraided Hom-Hopf algebra. Denote by \(^H{\mathcal {M}}\) the category whose objects are left \((H,\beta )\)-Hom-comodules \((M,\bar{\psi }^M,\alpha _M)\) and morphisms are morphisms of left-\((H,\beta )\)-Hom-comodules. Then \(^H{\mathcal {M}}\) is a braided tensor subcategory of \(_H^H{\mathcal {YD}}\), with tensor product defined as in Proposition 13.8, associativity constraints defined by the formula \(\bar{\mathbf {a}}_{M,N,P}: (M\otimes N)\otimes P\longrightarrow M\otimes (N\otimes P),~~(m\otimes n)\otimes p\mapsto \alpha _M(m)\otimes (n \otimes \alpha _P^{-1}(p)),\) where \(m\in M\), \(n\in N\) and \(p\in P\), the braiding defined by \(\bar{\mathbf {c}}_{M,N}: M\otimes N\longrightarrow N\otimes M,~~m\otimes n\mapsto \sigma (n_{-1},m_{-1})\alpha _N^{-1}(n_{0})\otimes \alpha _M^{-1}(m_{0}),\) where \(m\in M\) and \(n\in N\) and the unit \((K,id_K)\).

Corollary 13.2

([11]) Let \((H, \beta , \sigma )\) be a cobraided Hom-Hopf algebra. If \((M,\bar{\psi }^M,\alpha _M)\) and \((N,\bar{\psi }^N,\alpha _N)\) are two \((H, \beta )\)-Hom-comodules, we define the linear map

$$ B_{M,N}: M\otimes N\longrightarrow N\otimes M,~~~~ m\otimes n\mapsto \sigma (n_{-1},m_{-1})(n_{0}\otimes m_{0}). $$

Then, we have \(B_{M,N}\circ (\alpha _M\otimes \alpha _N)=(\alpha _N\otimes \alpha _M)\circ B_{M,N}\) and, if \((P,\bar{\psi }^P,\alpha _P)\) is another \((H, \beta )\)-Hom-comodule, the maps \(B_{\underline{~~},~\underline{~~}}\) satisfy the Hom-Yang-Baxter equation:

$$ (\alpha _P\otimes B_{M,N})\circ (B_{M,P}\otimes \alpha _N)\circ (\alpha _M\otimes B_{N,P})=(B_{N,P}\otimes \alpha _M)\circ (\alpha _N\otimes B_{M,P})\circ (B_{M,N}\otimes \alpha _P). $$

Proof

By Theorem 13.3 and let \(h\bullet _N n=\sigma (n_{-1},\beta ^{-3}(h))n_0\) in Proposition 13.5, we can obtain the result.    \(\square \)

Theorem 13.4

Let \((H, \beta , \sigma )\) be a cobraided Hom-Hopf algebra. Assume that \((A, \rho ^A, \alpha )\) is a Hom-Hopf algebra in the category \(^H{\mathcal {M}}\). Define \(\triangleright _A: H\otimes A\longrightarrow A\) by

$$ h\triangleright _A a=\sigma (a_{-1}, \beta ^{-3}(h))a_{0}, $$

where \(h\in H\), \(a\in A\) and \(\rho ^A(a)=a_{-1}\otimes a_{0}\). Then \((A^{\natural }_{\diamond } H, \alpha \otimes \beta )\) is a Radford biproduct Hom-Hopf algebra.

Proof

By Theorem 13.3, we only need to prove that the conditions (HM1), (HM2), (HMA1), (HMA2) and (HYD) hold. And (HM1) and (HMA2) are easy. While

$$\begin{aligned} \begin{array}{rcl} \beta (h)\triangleright _A (g\triangleright _A a) &{}{\mathop {=}\limits ^{}}&{}\sigma (a_{-1},\beta ^{-3}(g))\sigma (a_{0-1},\beta ^{-2}(h))a_{00}\\ &{}{\mathop {=}\limits ^{(HCM2)}}&{}\sigma (\beta ^{-1}(a_{-11}),\beta ^{-3}(g))\sigma (a_{-12},\beta ^{-2}(h))\alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(CHA5)}}&{}\sigma (a_{-11},\beta ^{-2}(g))\sigma (a_{-12},\beta ^{-2}(h))\alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(CHA3)}}&{}\sigma (\beta (a_{-1}),\beta ^{-3}(h)\beta ^{-3}(g))\alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(HCM1)(HA1)}}&{}\sigma (\alpha (a)_{-1}),\beta ^{-3}(hg))\alpha (a)_{0}\\ &{}{\mathop {=}\limits ^{}}&{}hg\triangleright _A \alpha (a), \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{rcl} \beta ^2(h)\triangleright _A (ab) &{}{\mathop {=}\limits ^{}}&{}\sigma ((ab)_{-1},\beta ^{-1}(h))(ab)_{0}\\ &{}{\mathop {=}\limits ^{(HCMA1)}}&{}\sigma (a_{-1}b_{-1},\beta ^{-1}(h))a_{0}b_{0}\\ &{}{\mathop {=}\limits ^{(CHA2)(HC1)}}&{}\sigma (\beta (a_{-1}),\beta ^{-2}(h_{1}))\sigma (\beta (b_{-1}),\beta ^{-2}(h_{2}))a_{0}b_{0}\\ &{}{\mathop {=}\limits ^{(CHA5)}}&{}\sigma (a_{-1},\beta ^{-3}(h_{1}))\sigma (b_{-1},\beta ^{-3}(h_{2}))a_{0}b_{0}\\ &{}{\mathop {=}\limits ^{}}&{}(h_1\triangleright _A a)(h_2\triangleright _A b), \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{rcl} (\beta ^2(h_1)\triangleright _A a)_{-1}h_2\otimes (\beta ^2(h_1)\triangleright _A a)_{0} &{}{\mathop {=}\limits ^{}}&{}\sigma (a_{-1},\beta ^{-1}(h_1))a_{0-1}h_2\otimes a_{00}\\ &{}{\mathop {=}\limits ^{(HCM2)}}&{}\sigma (\beta ^{-1}(a_{-11}),\beta ^{-1}(h_1))a_{-12}h_2\otimes \alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(CHA5)}}&{}\sigma (a_{-11},h_1)a_{-12}h_2\otimes \alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(CHA4)}}&{}h_1a_{-11}\sigma (a_{-12},h_2)\otimes \alpha (a_{0})\\ &{}{\mathop {=}\limits ^{(HCM2)}}&{}h_1\beta (a_{-1})\otimes \sigma (a_{0-1},h_2)a_{00}\\ &{}{\mathop {=}\limits ^{}}&{}h_1\beta (a_{-1})\otimes (\beta ^3(h_2)\triangleright _A a_{0}), \end{array} \end{aligned}$$

finishing the proof.    \(\square \)

Dually, we have

Theorem 13.5

Let \((H, \beta , \mathrm {R})\) be a quasitriangular Hom-Hopf algebra. Assume that \((A, \triangleright _A, \alpha )\) is a Hom-Hopf algebra in the category \(_H{\mathcal {M}}\). Define \(\rho ^A: A\longrightarrow H\otimes A\) by

$$ \rho ^A(a)=\beta ^{-3}(\mathrm {R}^2)\otimes (\mathrm {R}^1\triangleright _A a), $$

where \(a\in A\). Then \((A^{\natural }_{\diamond } H, \alpha \otimes \beta )\) is a Radford biproduct Hom-Hopf algebra.

13.4 Twisted Tensor Biproduct Hom-Hopf Algebra

In this section, we consider the twisted tensor biproduct Hom-Hopf algebra generalizing the Radford’s biproduct Hom-Hopf algebra. And two nontrivial examples are given.

Theorem 13.6

Let \((H, \beta )\) be a Hom-bialgebra, \((A, \alpha )\) a Hom-algebra and a Hom-coalgebra. Let \(R: H\otimes A \longrightarrow A\otimes H\) and \(T: A\otimes H \longrightarrow H\otimes A\) be two linear maps such that the conditions (R) and (T) hold. Assume that \((A\natural _R H,\alpha \otimes \beta )\) is a R-smash product Hom-algebra and \((A\diamond _T H,\alpha \otimes \beta )\) is a T-smash coproduct Hom-coalgebra. Then the following are equivalent:

  • \((A^{\natural _R}_{\diamond _T} H, \mu _{\natural _R H}, 1_A\otimes 1_H, \varDelta _{A\diamond _T H}, \varepsilon _A\otimes \varepsilon _H, \alpha \otimes \beta )\) is a Hom-bialgebra.

  • The following conditions hold (\(\forall ~a,b\in A\) and \(h,g\in H\)):    

(B1) \(1_{AT}\otimes 1_{HT}=1_{A}\otimes 1_{H}\) and \(\varDelta _A(1_A)=1_A\otimes 1_A\),    

(B2) \((ab)_1\otimes 1_{HT}\otimes (ab)_{2T}=a_1\alpha ^{-1}(b_1)_R\otimes \beta ^{-1}(1_{HTR})1_{Ht}\otimes a_{2T}b_{2t}\),    

(B3) \(h_{T}\otimes a_T=1_{HT}\beta ^{-1}(h)_t\otimes \alpha ^{-1}(a)_T1_{At}\),

(B4) \((h_1g_1)_T\otimes 1_{AT}\otimes \beta (h_2)\beta (g_2)\)  

\(~~~~~~~~~~~~~=h_{1T}g_{1t}\otimes 1_{AT}\alpha (\alpha ^{-2}(1_{At})_R)\otimes \beta ^{-1}(\beta (h_2)_R)\beta (g_2)\),

(B5) \(\alpha ^{-1}(a)_{R1}\otimes \beta ^{-1}(h_{R1})_T\otimes \alpha (\alpha ^{-1}(a)_{R2})_T\otimes h_{R2}\)

\(~~~~~~~~~~~~~=\alpha ^{-1}(a_1)_R\otimes \beta ^{-1}(\beta ^{-1}(h_1)_{TR})1_{Ht}\otimes 1_{AT}\alpha (\alpha ^{-2}(a_{2t})_r)\otimes h_{2r}\).    (B6)

\(\varepsilon _A(a_R)\varepsilon _H(h_R)=\varepsilon _A(a)\varepsilon _H(h)\) and \(\varepsilon _A\) is a Hom-algebra map.

In this case, we call this Hom-bialgebra twisted tensor biproduct Hom-bialgebra and denote it by \((A^{\natural _R}_{\diamond _T} H,\alpha \otimes \beta ).\)

Proof

(\(\Longleftarrow \)) It is easy to prove that \(\varepsilon _{A^{\natural _R}_{\diamond _T} H}=\varepsilon _A\otimes \varepsilon _H\) is a morphism of Hom-algebras. Next we check \(\varDelta _{A^{\natural _R}_{\diamond _T} H}=\varDelta _{A\diamond _T H}\) is a morphism of Hom-algebras as follows. For all \(a,b\in A\) and \(h,g\in H\), we have

$$\begin{aligned}&\varDelta _{A^{\natural _R}_{\diamond _T} H}((a\otimes h)(b\otimes g))\\&~~~~~{\mathop {=}\limits ^{}}(a\alpha ^{-1}(b)_{R})_{1}\otimes \beta ^{-1}((\beta ^{-1}(h_{R})g)_{1})_{T}\otimes \alpha ^{-1}((a\alpha ^{-1}(b)_{R})_{2T})\otimes (\beta ^{-1}(h_{R})g)_{2}\\&~~~{\mathop {=}\limits ^{(B3)}}(a\alpha ^{-1}(b)_{R})_{1}\otimes 1_{HT}\beta ^{-2}((\beta ^{-1}(h_{R})g)_{1})_{t}\otimes \alpha ^{-1}(\alpha ^{-1}((a\alpha ^{-1}(b)_{R})_{2})_{T}1_{At})\\&~~~~~~~~~\otimes (\beta ^{-1}(h_{R})g)_{2}\\&~~~{\mathop {=}\limits ^{(T)}}(a\alpha ^{-1}(b)_{R})_{1}\otimes \beta ^{-1}(1_{HT})\beta ^{-2}((\beta ^{-1}(h_{R})g)_{1})_{t}\otimes \alpha ^{-1}(\alpha ^{-1}((a\alpha ^{-1}(b)_{R})_{2T})1_{At})\\&~~~~~~~~~\otimes (\beta ^{-1}(h_{R})g)_{2}\\&~~~{\mathop {=}\limits ^{(B2)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes \beta ^{-1}(\beta ^{-1}(1_{H\bar{T}r})1_{H\bar{t}})\beta ^{-2}((\beta ^{-1}(h_{R})g)_{1})_{t}\\&~~~~~~~~~\otimes \alpha ^{-1}((\alpha ^{-1}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(b)_{R2\bar{t}}))1_{At})\otimes (\beta ^{-1}(h_{R})g)_{2}\\&~~~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes \beta ^{-1}(\beta ^{-1}(1_{H\bar{T}r})1_{H\bar{t}})(\beta ^{-3}(h_{R})_{1}\beta ^{-2}(g)_{1})_{t}\\&~~~~~~~~~\otimes \alpha ^{-1}((\alpha ^{-1}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(b)_{R2\bar{t}}))1_{At})\otimes \beta (\beta (\beta ^{-3}(h_{R})_{2})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(B4)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes \beta ^{-1}(\beta ^{-1}(1_{H\bar{T}r})1_{H\bar{t}})(\beta ^{-3}(h_{R})_{1T}\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes \alpha ^{-1}((\alpha ^{-1}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(b)_{R2\bar{t}}))(1_{AT}\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})))\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-1}(1_{H\bar{t}}))(\beta ^{-3}(h_{R})_{1T}\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes \alpha ^{-1}((\alpha ^{-1}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(b)_{R2\bar{t}}))(1_{AT}\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})))\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(HA2)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-1}(\beta ^{-1}(1_{H\bar{t}})\beta ^{-3}(h_{R})_{1T}))\beta (\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes \alpha ^{-1}((\alpha ^{-1}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(\alpha ^{-1}(b)_{R2\bar{t}})1_{AT}))\alpha ^2(\alpha ^{-2}(1_{At})_{\bar{R}})))\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})(\beta ^{-2}(1_{H\bar{t}})\beta ^{-1}(\beta ^{-3}(h_{R})_{1T})))\beta (\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-2}(\alpha ^{-1}(b)_{R2\bar{t}})\alpha ^{-1}(1_{AT})))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(T)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})(1_{H\bar{t}}\beta ^{-1}(\beta ^{-3}(h_{R})_{1})_{T}))\beta (\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-2}(\alpha ^{-1}(b)_{R2})_{\bar{t}}1_{AT}))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(B3)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-3}(h_{R})_{1T})\beta (\beta ^{-2}(g)_{1t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(\alpha ^{-1}(b)_{R2})_{T}))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\\&~~~~~~~~~\otimes \beta (\beta ^{-1}(\beta (\beta ^{-3}(h_{R})_{2})_{\bar{R}})\beta (\beta ^{-2}(g)_{2}))\\&~~~{\mathop {=}\limits ^{(HC1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-3}(h_{R1})_{T})\beta (\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-1}(\alpha ^{-1}(\alpha ^{-1}(b)_{R2})_{T}))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta (\beta ^{-1}(\beta ^{-2}(h_{R2})_{\bar{R}})\beta ^{-1}(g_{2}))\\&~~~{\mathop {=}\limits ^{(T)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b)_{R1})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-2}(\beta ^{-1}(h_{R1})_{T}))\beta (\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-3}(\alpha (\alpha ^{-1}(b)_{R2})_{T}))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta (\beta ^{-1}(\beta ^{-2}(h_{R2})_{\bar{R}})\beta ^{-1}(g_{2}))\\ \end{aligned}$$
$$\begin{aligned}&~{\mathop {=}\limits ^{(B5)(HA1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b_{1})_{R})_{r}\otimes (\beta ^{-2}(1_{H\bar{T}r})\beta ^{-2}(\beta ^{-1}(\beta ^{-1}(h_{1})_{TR})1_{H\bar{t}}))\beta (\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes (\alpha ^{-2}(a_{2\bar{T}})\alpha ^{-3}(1_{AT}\alpha (\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})))\alpha (\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(HA2)(HA1)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b_{1})_{R})_{r}\otimes \beta ^{-2}(1_{H\bar{T}r}\beta ^{-1}(h_{1})_{TR})(\beta ^{-1}(1_{H\bar{t}})\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(a_{2\bar{T}}1_{AT})(\alpha ^{-1}(\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(R)}}a_{1}\alpha ^{-1}(\alpha ^{-1}(b_{1})_{Rr})\otimes \beta ^{-2}(\beta ^{-1}(\beta (1_{H\bar{T}})_{r})\beta ^{-1}(h_{1})_{TR})(\beta ^{-1}(1_{H\bar{t}})\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(a_{2\bar{T}}1_{AT})(\alpha ^{-1}(\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(RS2)}}a_{1}\alpha ^{-1}(b_{1R})\otimes \beta ^{-2}((1_{H\bar{T}}\beta ^{-1}(h_{1})_{T})_{R})(\beta ^{-1}(1_{H\bar{t}})\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(\alpha ^{-1}(\alpha (a_{2}))_{\bar{T}}1_{AT})(\alpha ^{-1}(\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(B3)}}a_{1}\alpha ^{-1}(b_{1R})\otimes \beta ^{-2}(h_{1TR})\beta ^{-1}(1_{H\bar{t}}\beta (\beta ^{-2}(g_{1})_{t}))\\&~~~~~~~~~\otimes \alpha ^{-2}(\alpha (a_{2})_{T})(\alpha ^{-1}(\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(b_{1R})\otimes \beta ^{-2}(h_{1TR})(\beta ^{-1}(1_{H\bar{t}})\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(\alpha (a_{2})_{T})(\alpha ^{-1}(\alpha ^{-2}(b_{2\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(T)}}a_{1}\alpha ^{-1}(b_{1R})\otimes \beta ^{-2}(h_{1TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(\alpha (a_{2})_{T})(\alpha ^{-1}(\alpha ^{-1}(\alpha ^{-1}(b_{2})_{\bar{t}})_{\bar{r}})\alpha ^{-2}(1_{At})_{\bar{R}})\otimes \beta ^{-2}(h_{2\bar{r}})_{\bar{R}}g_{2}\\&~{\mathop {=}\limits ^{(R)}}a_{1}\alpha ^{-1}(b_{1R})\otimes \beta ^{-2}(h_{1TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-2}(\alpha (a_{2})_{T})(\alpha ^{-2}(\alpha ^{-1}(b_{2})_{\bar{t}})_{\bar{r}}\alpha ^{-1}(\alpha ^{-1}(1_{At})_{\bar{R}}))\otimes \beta ^{-1}(\beta ^{-1}(h_{2})_{\bar{r}\bar{R}})g_{2}\\&~{\mathop {=}\limits ^{(R)}}a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-1}(a_{2T})(\alpha ^{-2}(\alpha ^{-1}(b_{2})_{\bar{t}})_{\bar{r}}\alpha ^{-1}(\alpha ^{-1}(1_{At})_{\bar{R}}))\otimes \beta ^{-1}(\beta ^{-1}(h_{2})_{\bar{r}\bar{R}})g_{2}\\&~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-1}(a_{2T})\alpha ^{-1}(\alpha (\alpha ^{-2}(\alpha ^{-1}(b_{2})_{\bar{t}})_{\bar{r}})\alpha (\alpha ^{-2}(1_{At}))_{\bar{R}})\otimes \beta ^{-1}(\beta ^{-1}(h_{2})_{\bar{r}\bar{R}})g_{2}\\&~{\mathop {=}\limits ^{(RS3)}}a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-1}(a_{2T})(\alpha ^{-2}(\alpha ^{-1}(b_{2})_{\bar{t}})\alpha ^{-2}(1_{At}))_{r})\otimes \beta ^{-1}(h_{2r})g_{2}\\&~{\mathop {=}\limits ^{(HA1)}}a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})(1_{H\bar{t}}\beta ^{-2}(g_{1})_{t})\\&~~~~~~~~~\otimes \alpha ^{-1}(a_{2T})\alpha ^{-2}(\alpha ^{-1}(b_{2})_{\bar{t}}1_{At})_{r}\otimes \beta ^{-1}(h_{2r})g_{2}\\&~{\mathop {=}\limits ^{(B3)}}a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})\beta ^{-1}(g_{1})_{t}\otimes \alpha ^{-1}(a_{2T})\alpha ^{-2}(b_{2t})_{r}\otimes \beta ^{-1}(h_{2r})g_{2}\\&~~{\mathop {=}\limits ^{}}\varDelta _{A^{\natural _R}_{\diamond _T} H}(a\otimes h)\varDelta _{A^{\natural _R}_{\diamond _T} H}(b\otimes g), \end{aligned}$$

and \(\varDelta _{A^{\natural _R}_{\diamond _T} H}(1_A\otimes 1_H)=1_A\otimes 1_H\otimes 1_A\otimes 1_H\) can be proved directly.

\((\Longrightarrow )\) It is easy to prove that the conditions (B1) and (B6) hold. Next we check the conditions (B2)–(B5) are satisfied as follows.

For all \(a,b\in A\) and \(h,g\in H\), since \(\varDelta _{A^{\natural _R}_{\diamond _T} H}((a\otimes h)(b\otimes g))=\varDelta _{A^{\natural _R}_{\diamond _T} H}(a\otimes h)\varDelta _{A^{\natural _R}_{\diamond _T} H}(b\otimes g)\), we have

$$\begin{aligned} (*)&(a\alpha ^{-1}(b)_{R})_{1}\otimes \beta ^{-1}((\beta ^{-1}(h_{R})g)_{1})_{T}\otimes \alpha ^{-1}((a\alpha ^{-1}(b)_{R})_{2T})\otimes (\beta ^{-1}(h_{R})g)_{2}\\&~~~~=a_{1}\alpha ^{-1}(b_{1})_{R}\otimes \beta ^{-1}(\beta ^{-1}(h_{1})_{TR})\beta ^{-1}(g_{1})_{t}\otimes \alpha ^{-1}(a_{2T})\alpha ^{-2}(b_{2t})_{r}\otimes \beta ^{-1}(h_{2r})g_{2} \end{aligned}$$

Apply \(id_A\otimes id_H\otimes id_A\otimes \varepsilon _H\) to Eq.(\(*\)) and then set \(h=g=1_H\), we get (B2).

(B3) can be obtained by using \(\varepsilon _A\otimes id_H\otimes id_A\otimes \varepsilon _H\) to Eq.(\(*\)) and setting \(b=1_A, h=1_H\).

Similarly, we apply \(\varepsilon _A\otimes id_H\otimes id_A\otimes id_H\) to Eq.(\(*\)) and set \(a=b=1_A\), then (B4) holds.

(B5) can be derived by letting \(a=1_A\) and \(g=1_H\) in Eq.(\(*\)).    \(\square \)

Remark 13.2

If \(\alpha =id_A\) and \(\beta =id_H\), then we can get the twisted tensor biproduct bialgebra in [4].

Corollary 13.3

([2]) Let \((C,\alpha ), (H,\beta )\) be two Hom-bialgebras, and \(T: C\otimes H \longrightarrow H\otimes C\) a linear map such that the condition (T) holds. Then the T-smash coproduct Hom-coalgebra \((C\diamond _T H, \alpha \otimes \beta )\) endowed with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if T is a map of Hom-algebras.

Proof

Let \(R(h\otimes c)=\alpha (c)\otimes \beta (h)\) in Theorem 13.6. Then, by (B2)–(B5), we have

$$\begin{aligned}&(C1)\, \, 1_{HT}\otimes (ab)_T=1_{HT}1_{Ht}\otimes a_Tb_t,\\&(C2)\,\, h_T\otimes a_T=1_{hT}\beta ^{-1}(h)_t\otimes \alpha ^{-1}(a)_T1_{At}=\beta ^{-1}(h)_t1_{hT}\otimes 1_{At}\alpha ^{-1}(a)_T,\\&(C3)\, \, (hg)_T\otimes 1_{AT}=h_Tg_t\otimes 1_{AT}1_{At}. \end{aligned}$$

Next we only prove that \((hg)_T\otimes (ab)_T=h_Tg_t\otimes a_Tb_t\) as follows. And the rest are easy.

$$\begin{aligned}&(hg)_T\otimes (ab)_T\\&~~~~~~~{\mathop {=}\limits ^{(C2)}}1_{HT}\beta ^{-1}(hg)_{t}\otimes \alpha ^{-1}(ab)_{T}1_{At}\\&~~~~~~~{\mathop {=}\limits ^{(HA1)}}1_{HT}(\beta ^{-1}(h)\beta ^{-1}(g))_{t}\otimes (\alpha ^{-1}(a)\alpha ^{-1}(b))_{T}1_{At}\\&~~~~~~~{\mathop {=}\limits ^{(C1)(C3)}}(1_{H\bar{\bar{T}}}1_{HT}(\beta ^{-1}(h)_{\bar{T}}\beta ^{-1}(g)_{t})\otimes (\alpha ^{-1}(a)_{\bar{\bar{T}}}\alpha ^{-1}(b)_{T})(1_{A\bar{T}}1_{At})\\&~~~~~~~{\mathop {=}\limits ^{(HA2)}}(1_{H\bar{\bar{T}}}\beta ^{-1}(1_{HT}\beta ^{-1}(h)_{\bar{T}}))\beta (\beta ^{-1}(g)_{t})\otimes (\alpha ^{-1}(a)_{\bar{\bar{T}}}\alpha ^{-1}(\alpha ^{-1}(b)_{T}1_{A\bar{T}}))\alpha (1_{At})\\&~~~~~~~{\mathop {=}\limits ^{(C2)}}(1_{H\bar{\bar{T}}}\beta ^{-1}(\beta ^{-1}(h)_{\bar{T}}1_{HT}))\beta (\beta ^{-1}(g)_{t})\otimes (\alpha ^{-1}(a)_{\bar{\bar{T}}}\alpha ^{-1}(1_{A\bar{T}}\alpha ^{-1}(b)_{T}))\alpha (1_{At})\\&~~~~~~~{\mathop {=}\limits ^{(HA2)}}(1_{H\bar{\bar{T}}}\beta ^{-1}(h)_{\bar{T}})(1_{HT}\beta ^{-1}(g)_{t})\otimes (\alpha ^{-1}(a)_{\bar{\bar{T}}}1_{A\bar{T}})(\alpha ^{-1}(b)_{T}1_{At})\\&~~~~~~~{\mathop {=}\limits ^{(C2)}}h_Tg_t\otimes a_Tb_t, \end{aligned}$$

finishing the proof.    \(\square \)

Corollary 13.4

([3]) Let \((A,\alpha ), (H,\beta )\) be two Hom-bialgebras, and \(R: H\otimes A \longrightarrow A\otimes H\) a linear map such that the condition (R) holds. Then the R-smash product Hom-algebra \((A\natural _R H, \alpha \otimes \beta )\) endowed with the tensor product Hom-coalgebra structure becomes a Hom-bialgebra if and only if R is a map of Hom-coalgebras.

Proof

Let \(T(a\otimes h)=\beta (h)\otimes \alpha (a)\) in Theorem 13.6.    \(\square \)

Corollary 13.5

([2]) Let \((H, \beta )\) be a Hom-bialgebra, \((A, \alpha )\) a left \((H, \beta )\)-module Hom-algebra with module structure \(\triangleright : H\otimes A\longrightarrow A\) and a left \((H, \beta )\)-comodule Hom-coalgebra with comodule structure \(\rho : A\longrightarrow H\otimes A\). Then the following are equivalent:

  • \((A^{\natural }_{\diamond } H, \mu _{A\natural H}, 1_A\otimes 1_H, \varDelta _{A\diamond H}, \varepsilon _A\otimes \varepsilon _H, \alpha \otimes \beta )\) is a Hom-bialgebra, where \((A\natural H, \alpha \otimes \beta )\) is a smash product Hom-algebra and \((A\diamond H, \alpha \otimes \beta )\) is a smash coproduct Hom-coalgebra.

  • The following conditions hold (\(\forall ~a,b\in A\) and \(h\in H\)):        

(R1) \((A,\rho ,\alpha )\) is an \((H,\beta )\) -comodule Hom-algebra,

(R2) \((A,\triangleright ,\alpha )\) is an \((H,\beta )\) -module Hom-coalgebra,

(R3) \(\varepsilon _A\) is a Hom-algebra map and \(\varDelta _A(1_A)=1_A\otimes 1_A,\)    

(R4) \(\varDelta _A(ab)=a_1(\beta ^2(a_{2-1})\triangleright \alpha ^{-1}(b_1))\otimes \alpha ^{-1}(a_{20})b_2,\)    

(R5) \(h_1\beta (a_{-1})\otimes (\beta ^3(h_2)\triangleright a_0)=(\beta ^2(h_1)\triangleright a)_{-1}h_2\otimes (\beta ^2(h_1)\triangleright a)_{0}\).

In this case, we call \((A^{\natural }_{\diamond } H, \alpha \otimes \beta )\) Radford biproduct bialgebra.

Proof

Let \(R(h\otimes a)=(h_1\triangleright a)\otimes h_2\) and \(T(a\otimes h)=a_{-1}h\otimes a_0\) in Theorem 13.6.

   \(\square \)

Theorem 13.7

Let \((H,\beta ,S_{H})\) be a Hom-Hopf algebra, and \((A,\alpha )\) be a Hom-algebra and a Hom-coalgebra. Let \(R: H\otimes A \longrightarrow A\otimes H\) and \(T: A\otimes H \longrightarrow H\otimes A\) be two linear maps such that the conditions (R) and (T) hold. Assume that \((A^{\natural _R}_{\diamond _T} H, \alpha \otimes \beta )\) is a twisted tensor biproduct Hom-bialgebra defined as above, and \(S_A: A\longrightarrow A\) is a linear map such that \(S_A(a_1)a_2=a_1S_A(a_2)=\varepsilon _A(a)1_A\) and \(\alpha \circ S_A=S_A\circ \alpha \) hold. Then \((A^{\natural _R}_{\diamond _T} H, \alpha \otimes \beta , S_{A^{\natural _R}_{\diamond _T} H})\) is a Hom-Hopf algebra, where

$$ S_{A^{\natural _R}_{\diamond _T} H}(a\otimes h)=S_A(\alpha ^{-2}(a_T))_R\otimes \beta ^{-1}(S_H(\beta ^{-1}(h)_T)_{R}). $$

Proof

We can compute that \((A^{\natural }_{\diamond } H, \alpha \otimes \beta , S_{A^{\natural }_{\diamond } H})\) is a Hom-Hopf algebra as follows. For all \(a\in A\) and \(h\in H\), we have

$$\begin{aligned}&(S_{A^{\natural _R}_{\diamond _T} H}*id_{A^{\natural _R}_{\diamond _T} H})(a\otimes h)\\&~~~~~{\mathop {=}\limits ^{}}S_A(\alpha ^{-2}(a_{1t}))_{R}\alpha ^{-2}(a_{2T})_r\otimes \beta ^{-1}(\beta ^{-1}(S_H(\beta ^{-1}(\beta ^{-1}(h_{1})_{T})_{t})_{R})_{r})h_2\\&~~{\mathop {=}\limits ^{(T)}}S_A(\alpha ^{-2}(a_{1t}))_{R}\alpha ^{-3}(\alpha (a_{2})_{T})_r\otimes \beta ^{-1}(\beta ^{-1}(S_H(\beta ^{-2}(h_{1T})_{t})_{R})_{r})h_2\\&~~{\mathop {=}\limits ^{(T)}}S_A(\alpha ^{-4}(\alpha ^2(a_{1})_{t}))_{R}\alpha ^{-3}(\alpha (a_{2})_{T})_r\otimes \beta ^{-1}(\beta ^{-1}(S_H(\beta ^{-2}(h_{1Tt}))_{R})_{r})h_2\\&~~{\mathop {=}\limits ^{(T)}}S_A(\alpha ^{-4}(\alpha (\alpha (a)_{1})_{t}))_{R}\alpha ^{-4}(\alpha (\alpha (a)_{2T}))_r\otimes \beta ^{-1}(\beta ^{-1}(S_H(\beta ^{-2}(h_{1Tt}))_{R})_{r})h_2\\&~~{\mathop {=}\limits ^{(TS3)}}S_A(\alpha ^{-4}(\alpha ^2(a)_{T1}))_{R}\alpha ^{-4}(\alpha ^2(a)_{T2})_r\otimes \beta ^{-1}(\beta ^{-1}(S_H(\beta ^{-1}(h_{1T}))_{R})_{r})h_2\\&~~~~{\mathop {=}\limits ^{}}\alpha (S_A(\alpha ^{-5}(\alpha ^2(a)_{T1}))_{R})\alpha (\alpha ^{-5}(\alpha ^2(a)_{T2}))_r\otimes \beta ^{-1}(S_H(\beta ^{-2}(h_{1T}))_{Rr})h_2\\&~~{\mathop {=}\limits ^{(RS3)}}\alpha ((S_A(\alpha ^{-5}(\alpha ^2(a)_{T1}))\alpha ^{-5}(\alpha ^2(a)_{T2}))_R)\otimes \beta ^{-1}(S_H(\beta ^{-1}(h_{1T}))_{R})h_2\\&~~{\mathop {=}\limits ^{(HA1)}}\alpha (\alpha ^{-5}(S_A(\alpha ^2(a)_{T1})\alpha ^2(a)_{T2})_R)\otimes \beta ^{-1}(S_H(\beta ^{-1}(h_{1T}))_{R})h_2\\&~~{\mathop {=}\limits ^{(HA1)}}(\alpha (1_{AR})\otimes \beta ^{-1}(S_H(\beta ^{-1}(h_{1T}))_{R})h_2)\varepsilon _A(\alpha ^2(a)_{T})\\&~~{\mathop {=}\limits ^{(TS1)}}(\alpha (1_{AR})\otimes \beta ^{-1}(S_H(h_{1})_{R})h_2)\varepsilon _A(a)\\&~{\mathop {=}\limits ^{(RS1)(HA1)}}(1_{A}\otimes S_H(h_{1})h_2)\varepsilon _A(a)\\&~~~~~{\mathop {=}\limits ^{}}(1_{A}\otimes 1_{H})\varepsilon _A(a)\varepsilon _H(h). \end{aligned}$$

Similarly, we have \((id_{A^{\natural _R}_{\diamond _T} H}*S_{A^{\natural _R}_{\diamond _T} H})(a\otimes h)=(1_{A}\otimes 1_{H})\varepsilon _A(a)\varepsilon _H(h)\).

Finally,

$$\begin{aligned} \begin{array}{rcl} (\alpha \otimes \beta )\circ S_{A^{\natural _R}_{\diamond _T} H}(a\otimes h) &{}{\mathop {=}\limits ^{}}&{}\alpha (S_A(\alpha ^{-2}(a_T))_R)\otimes S_H(\beta ^{-1}(h)_T)_{R}\\ &{}{\mathop {=}\limits ^{(R)}}&{}\alpha (S_A(\alpha ^{-2}(a_T)))_R\otimes \beta ^{-1}(\beta (S_H(\beta ^{-1}(h)_T))_{R})\\ &{}{\mathop {=}\limits ^{}}&{}S_A(\alpha ^{-1}(a_T))_R\otimes \beta ^{-1}(S_H(\beta (\beta ^{-1}(h)_T))_{R})\\ &{}{\mathop {=}\limits ^{(T)}}&{}S_A(\alpha ^{-2}(\alpha (a)_T))_R\otimes \beta ^{-1}(S_H(h_T)_{R})\\ &{}{\mathop {=}\limits ^{(T)}}&{}S_{A^{\natural _R}_{\diamond _T} H}\circ (\alpha (a)\otimes \beta (h)), \end{array} \end{aligned}$$

finishing the proof.    \(\square \)

Corollary 13.6

([2]) Let \((H,\beta ,S_{H})\) be a Hom-Hopf algebra, and \((A,\alpha )\) be a Hom-algebra and a Hom-coalgebra. Assume that \((A^{\natural }_{\diamond } H, \alpha \otimes \beta )\) is a Radford biproduct Hom-bialgebra defined in Corollary 13.5, and \(S_A: A\longrightarrow A\) is a linear map such that \(S_A(a_1)a_2=a_1S_A(a_2)=\varepsilon _A(a)1_A\) and \(\alpha \circ S_A=S_A\circ \alpha \) hold. Then \((A^{\natural }_{\diamond } H, \alpha \otimes \beta , S_{A^{\natural }_{\diamond } H})\) is a Hom-Hopf algebra, where

$$ S_{A^{\natural }_{\diamond } H}(a\otimes h)=(S_H(a_{-1}\beta ^{-1}(h))_{1}\triangleright S_A(\alpha ^{-2}(a_{0})))\otimes \beta ^{-1}(S_H(a_{-1}\beta ^{-1}(h))_{2}). $$

Proof

Let \(R(h\otimes a){=}(h_1\triangleright a)\otimes h_2\) and \(T(a\otimes h){=}a_{-1}h\otimes a_0\) in Theorem 13.7.    \(\square \)

Example 13.1

Let \(K\mathbf {Z}_2=K\{1,a\}\) be Hopf group algebra (see [8]). Then \((K\mathbf {Z}_2, id_{K\mathbf {Z}_2})\) is a Hom-Hopf algebra.

Let \(T_{2,-1}=K\{1, g, x, gx|g^2=1, x^2=0\}\) be Taft’s Hopf algebra (see [4]), its coalgebra structure and antipode are given by

$$ \varDelta (g)=g\otimes g,~\varDelta (x) = x\otimes g+1\otimes x, ~\varDelta (gx)=gx\otimes 1+g\otimes gx; $$
$$ \varepsilon (g) = 1, \varepsilon (x) = 0, \varepsilon (gx)=0; $$

and

$$ S(g)=g,~S(x)=gx,~S(gx)=-x. $$

Define a linear map \(\alpha \): \(T_{2,-1}\longrightarrow T_{2,-1}\) by

$$ \alpha (1)=1,~\alpha (g)=g,~\alpha (x)=kx,~\alpha (gx)=kgx $$

where \(0\ne k\in K\). Then \(\alpha \) is an automorphism of Hopf algebras.

So we can get a Hom-Hopf algebra \(H_{\alpha }=(T_{2,-1}, \alpha \circ \mu _{T_{2,-1}}, 1_{T_{2,-1}}, \varDelta _{T_{2,-1}}\circ \alpha , \varepsilon _{T_{2,-1}}, \alpha )\) (see [7]).

With notations above. Define two linear maps as follows:

$$\begin{aligned}&R: K\mathbf {Z}_2\otimes H_{\alpha }\longrightarrow H_{\alpha }\otimes K\mathbf {Z}_2\\&~~~~1_{K\mathbf {Z}_2}\otimes 1_{H_{\alpha }}\mapsto 1_{H_{\alpha }}\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~1_{K\mathbf {Z}_2}\otimes g\mapsto g\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~1_{K\mathbf {Z}_2}\otimes x\mapsto kx\otimes 1_{K\mathbf {Z}_2}\\&~~~~~1_{K\mathbf {Z}_2}\otimes gx\mapsto kgx\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~~~~a\otimes 1_{H_{\alpha }}\mapsto 1_{H_{\alpha }}\otimes a\\&~~~~~~~~~a\otimes g\mapsto g\otimes a\\&~~~~~~~~~a\otimes x\mapsto kx\otimes a\\&~~~~~~~~~a\otimes gx\mapsto kgx\otimes a \end{aligned}$$

and

$$\begin{aligned}&T: H_{\alpha }\otimes K\mathbf {Z}_2\longrightarrow K\mathbf {Z}_2\otimes H_{\alpha }\\&~~~~1_{H_{\alpha }}\otimes 1_{K\mathbf {Z}_2}\mapsto 1_{K\mathbf {Z}_2}\otimes 1_{H_{\alpha }}\\&~~~~~~g\otimes 1_{K\mathbf {Z}_2}\mapsto 1_{K\mathbf {Z}_2}\otimes g\\&~~~~~~x\otimes 1_{K\mathbf {Z}_2}\mapsto ka\otimes x\\&~~~~~gx\otimes 1_{K\mathbf {Z}_2}\mapsto ka\otimes gx\\&~~~~1_{H_{\alpha }}\otimes a\mapsto a\otimes 1_{H_{\alpha }}\\&~~~~~~g\otimes a\mapsto a\otimes g\\&~~~~~~x\otimes a\mapsto k1_{K\mathbf {Z}_2}\otimes x\\&~~~~~gx\otimes a\mapsto k1_{K\mathbf {Z}_2}\otimes gx. \end{aligned}$$

By a direct computation, we have \(({H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}, \mu _{H_{\alpha }\natural _R {K\mathbf {Z}_2}},1_{H_{\alpha }}\otimes 1_{K\mathbf {Z}_2}, \varDelta _{H_{\alpha }\diamond _T {K\mathbf {Z}_2}}, \varepsilon _{H_{\alpha }}\otimes \varepsilon _{K\mathbf {Z}_2}, \alpha \otimes id_{K\mathbf {Z}_2})\) is a twisted tensor biproduct Hom-bialgebra. Furthermore, \(({H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}, \alpha \otimes id_{K\mathbf {Z}_2}, S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}})\) is a Hom-Hopf algebra, where \(S_{{H_{\alpha }}^{\natural }_{\diamond } {K\mathbf {Z}_2}}\) is defined by

$$\begin{aligned}&S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(1_{H_{\alpha }}\otimes 1_{K\mathbf {Z}_2})=1_{H_{\alpha }}\otimes 1_{K\mathbf {Z}_2};~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(1_{H_{\alpha }}\otimes a)=1_{H_{\alpha }}\otimes a\\&~~~~~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(g\otimes 1_{K\mathbf {Z}_2})=g\otimes 1_{K\mathbf {Z}_2};~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(g\otimes a)=g\otimes a\\&~~~~~~~~~~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(x\otimes 1_{K\mathbf {Z}_2})=y\otimes a;~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(x\otimes a)=y\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~~~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(y\otimes 1_{K\mathbf {Z}_2})=-x\otimes a;~~~S_{{H_{\alpha }}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}}(y\otimes a)=-x\otimes 1_{K\mathbf {Z}_2}. \end{aligned}$$

Example 13.2

Let \(K\mathbf {Z}_2=K\{1,a\}\) be Hopf group algebra (see [8]). Then \((K\mathbf {Z}_2, id_{K\mathbf {Z}_2})\) is a Hom-Hopf algebra. Let \(A=K\{1, x\}\) be a vector space. Define the multiplication \(\mu _A\) by

$$ 1x=x1=lx,~~x^2=0 $$

and the automorphism \(\beta : A\longrightarrow A\) by

$$ \beta (1)=1,~~~\beta (x)=lx $$

where \(0\ne l\in K\). Then \((A,\beta )\) is a Hom-algebra.

Define the comultiplication \(\varDelta _A\) by

$$ \varDelta _A(1)=1\otimes 1,~~\varDelta _A(x)=lx\otimes 1+l1\otimes x,~~\hbox {and}~~\varepsilon _A(1)=1,~~\varepsilon _A(x)=0. $$

Then \((A, \beta )\) is a Hom-coalgebra.

With notations above. Define two linear maps as follows:

$$\begin{aligned}&R: K\mathbf {Z}_2\otimes A\longrightarrow A\otimes K\mathbf {Z}_2\\&~~~~1_{K\mathbf {Z}_2}\otimes 1_{A}\mapsto 1_{A}\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~1_{K\mathbf {Z}_2}\otimes x\mapsto lx\otimes 1_{K\mathbf {Z}_2}\\&~~~~~~~~~a\otimes 1_{A}\mapsto 1_{A}\otimes a\\&~~~~~~~~~a\otimes x\mapsto -lx\otimes a \end{aligned}$$

and

$$\begin{aligned}&T: A\otimes K\mathbf {Z}_2\longrightarrow K\mathbf {Z}_2\otimes A\\&~~~~1_{A}\otimes 1_{K\mathbf {Z}_2}\mapsto 1_{K\mathbf {Z}_2}\otimes 1_{A}\\&~~~~~~x\otimes 1_{K\mathbf {Z}_2}\mapsto la\otimes x\\&~~~~1_{A}\otimes a\mapsto a\otimes 1_{A}\\&~~~~~~x\otimes a\mapsto l1_{K\mathbf {Z}_2}\otimes x. \end{aligned}$$

By a direct computation, we have \(({A}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}, \mu _{A\natural _R {K\mathbf {Z}_2}},1_{A}\otimes 1_{K\mathbf {Z}_2}, \varDelta _{A\diamond _T {K\mathbf {Z}_2}}, \varepsilon _{A}\otimes \varepsilon _{K\mathbf {Z}_2}, \alpha \otimes id_{K\mathbf {Z}_2})\) is a twisted tensor biproduct Hom-bialgebra. Furthermore, \(({A}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}, \alpha \otimes id_{K\mathbf {Z}_2}\), \(S_{{A}^{\natural _R}_{\diamond _T} {K\mathbf {Z}_2}})\) is a Hom-Hopf algebra, where \(S_{{A}^{\natural }_{\diamond } {K\mathbf {Z}_2}}\) is defined by

$$\begin{aligned}&S_{{A}^{\natural }_{\diamond } {K\mathbf {Z}_2}}(1_{A}\otimes 1_{K\mathbf {Z}_2})=1_{A}\otimes 1_{K\mathbf {Z}_2};~~~S_{{A}^{\natural }_{\diamond } {K\mathbf {Z}_2}}(1_{A}\otimes a)=1_{A}\otimes a\\&~~~~~~~~S_{{A}^{\natural }_{\diamond } {K\mathbf {Z}_2}}(x\otimes 1_{K\mathbf {Z}_2})=x\otimes a;~~~S_{{A}^{\natural }_{\diamond } {K\mathbf {Z}_2}}(x\otimes a)=-x\otimes 1_{K\mathbf {Z}_2}. \end{aligned}$$