Skip to main content

Distributed Methods for Reinforcement Learning Survey

  • Chapter
  • First Online:
Reinforcement Learning Algorithms: Analysis and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 883))

Abstract

Distributed methods have become an important tool to address the issue of high computational requirements for reinforcement learning. With this survey, we present several distributed methods including multi-agent schemes, synchronous and asynchronous parallel systems, as well as population-based approaches. We introduce the general principle and problem formulation, and discuss the historical development of distributed methods. We also analyze technical challenges, such as process communication and memory requirements, and give an overview of different application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato, C., Chowdhary, G., Geramifard, A., Üre, N.K., Kochenderfer, M.J.: Decentralized control of partially observable markov decision processes. In: 52nd IEEE Conference on Decision and Control, pp. 2398–2405. IEEE (2013)

    Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods, vol. 23. Prentice hall Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  3. Bertsekas, D.P., Yu, H.: Distributed asynchronous policy iteration in dynamic programming. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1368–1375. IEEE (2010). 10.1109/ALLERTON.2010.5707073. URL http://ieeexplore.ieee.org/document/5707073/

  4. Boyan, J., Littman, M.: A distributed reinforcement learning scheme for network routing. In: Proceedings of the international workshop on applications of neural networks to telecommunications, pp. 55–61. Psychology Press (1993)

    Google Scholar 

  5. Bu, L., Babu, R., De Schutter, B., et al.: A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38(2), 156–172 (2008)

    Google Scholar 

  6. Chen-Khong Tham, Renaud, J.C.: Multi-agent systems on sensor networks: A distributed reinforcement learning approach. In: 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 423–429. IEEE (2005). 10.1109/ISSNIP.2005.1595616. URL http://ieeexplore.ieee.org/document/1595616/

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database (2009)

    Google Scholar 

  8. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., et al.: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 (2018)

  9. Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., Creus-Costa, J., Savarese, S., Fei-Fei, L.: Surreal: Open-source reinforcement learning framework and robot manipulation benchmark. In: Conference on Robot Learning (2018)

    Google Scholar 

  10. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  11. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  12. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  13. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 66–83. Springer (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S., Riedmiller, M., et al.: Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017)

  16. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: Is multiagent deep reinforcement learning the answer or the question? a brief survey. arXiv preprint arXiv:1810.05587 (2018)

  17. Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., van Hasselt, H., Silver, D.: Distributed Prioritized Experience Replay. arXiv:1803.00933 [cs] (2018). URL http://arxiv.org/abs/1803.00933. ArXiv: 1803.00933

  18. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda, A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., et al.: Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 364(6443), 859–865 (2019)

    Google Scholar 

  19. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D., Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. CoRR abs/1611.05397 (2016). https://puma.ub.uni-stuttgart.de/bibtex/2b09864ee3f7ad5bfbc34e5ceaf19a10a/dblp. http://arxiv.org/abs/1611.05397. http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JaderbergMCSLSK16

  20. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., Dabney, W.: Recurrent experience replay in distributed reinforcement learning (2018)

    Google Scholar 

  21. Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: In Proceedings of the Seventeenth International Conference on Machine Learning. Citeseer (2000)

    Google Scholar 

  22. Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., Jordan, M., Stoica, I.: RLlib: abstractions for distributed reinforcement learning. In: Dy, J., Krause, A. (eds.) Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm, Sweden, 10–15 July, vol. 80, pp. 3053–3062. PMLR (2018). http://proceedings.mlr.press/v80/liang18b/liang18b.pdf. http://proceedings.mlr.press/v80/liang18b.html

  23. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  24. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, pp. 6379–6390 (2017)

    Google Scholar 

  25. Mao, H., Gong, Z., Ni, Y., Xiao, Z.: Accnet: Actor-coordinator-critic net for" learning-to-communicate" with deep multi-agent reinforcement learning. arXiv preprint arXiv:1706.03235 (2017)

  26. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International conference on machine learning, pp. 1928–1937 (2016)

    Google Scholar 

  27. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with less data and less time. Machine learning 13(1), 103–130 (1993)

    Google Scholar 

  28. Raiman, J., Zhang, S., Wolski, F.: Long-term planning and situational awareness in OpenAI five. arXiv preprint arXiv:1912.06721 (2019)

  29. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized Experience Replay. In: Interantional Conference for Learning Representations (ICLR) (2015). URL http://arxiv.org/abs/1511.05952

  30. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  31. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Google Scholar 

  32. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents. In: Proceedings of the tenth international conference on machine learning, pp. 330–337 (1993)

    Google Scholar 

  33. Tsitsiklis, J.N.: Asynchronous stochastic approximation and q-learning p. 18 (1994)

    Google Scholar 

  34. Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Article  Google Scholar 

  35. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  36. Wu, Y., Mansimov, E., Grosse, R.B., Liao, S., Ba, J.: Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation. In: Advances in neural information processing systems, pp. 5279–5288 (2017)

    Google Scholar 

  37. Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., Levine, S.: Collective robot reinforcement learning with distributed asynchronous guided policy search. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 79–86. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Czech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czech, J. (2021). Distributed Methods for Reinforcement Learning Survey. In: Belousov, B., Abdulsamad, H., Klink, P., Parisi, S., Peters, J. (eds) Reinforcement Learning Algorithms: Analysis and Applications. Studies in Computational Intelligence, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-030-41188-6_13

Download citation

Publish with us

Policies and ethics