Skip to main content

Deep Learning Prediction of Heat Propagation on 2-D Domain via Numerical Solution

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Abstract

Deep learning’s role in tackling complicated engineering problems becomes more and more effective by advances in computer science. One of the classical problems in physics is representing the solution of heat propagation in the arbitrary 2-D domain. Study of two-dimensional heat transfer provides a precious bed for related physical issues. In this work, by using finite volume method, we solved the two-dimensional heat equation on the arbitrary domain with specified limitations (considering three heated rectangular obstacles inside the main domain) for 100000 different cases. These cases were divided into big batches in order to reduce the computational cost. The solution for each case was used as sample data to train our deep neural network. After the training process, deep learning results have been compared to results which were produced by the commercial program (ANSYS). After analyzing deep learning efficiency, obviously, our network successfully was able to predict the solution of heat transfer physics with satisfactory precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ascher, U.M.: Numerical Methods for Evolutionary Differential Equations. vol. 5. Siam (2008)

    Google Scholar 

  2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  3. Bergman, T.L., Incropera, F.P., Lavine, A.S., Dewitt, D.P.: Introduction to Heat Transfer. Wiley (2011)

    Google Scholar 

  4. Bruch Jr., J.C., Zyvoloski, G.: Transient two-dimensional heat conduction problems solved by the finite element method. Int. J. Numer. Methods Eng. 8(3), 481–494 (1974)

    Article  Google Scholar 

  5. Chakraverty, S., Mall, S.: Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. CRC Press (2017)

    Google Scholar 

  6. Crowdy, D.G.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B/Fluids 25(4), 459–470 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dirichlet, P.G.L.: Über einen neuen Ausdruck zur Bestimmung der Dichtigkeit einer unendlich dünnen Kugelschale, wenn der Werth des Potentials derselben in jedem Punkte ihrer Oberfläche gegeben ist. Dümmler in Komm (1852)

    Google Scholar 

  8. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)

    Article  MathSciNet  Google Scholar 

  9. Grattan-Guinness, I., Fourier, J.B.J., et al.: Joseph Fourier, 1768-1830; a survey of his life and work, based on a critical edition of his monograph on the propagation of heat, presented to the Institut de France in 1807. MIT Press (1972)

    Google Scholar 

  10. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Nat. Acad. Sci. 115(34), 8505–8510 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M., et al.: Data-driven fluid simulations using regression forests. ACM Trans. Graph. (TOG) 34(6), 199 (2015)

    Google Scholar 

  12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  13. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep fluids: a generative network for parameterized fluid simulations. arXiv preprint arXiv:1806.02071 (2018)

  14. Kreyszig, E.: Advanced Engineering Mathematics. Wiley (2010)

    Google Scholar 

  15. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Advances in Neural Information Processing Systems, pp. 950–957 (1992)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  17. Li, H., Mulay, S.S.: Meshless Methods and Their Numerical Properties. CRC Press (2013)

    Google Scholar 

  18. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

    Article  MathSciNet  Google Scholar 

  19. Minkowycz, W.: Advances in Numerical Heat Transfer. vol. 1. CRC Press (1996)

    Google Scholar 

  20. Miyanawala, T.P., Jaiman, R.K.: An efficient deep learning technique for the Navier-Stokes equations: application to unsteady wake flow dynamics. arXiv preprint arXiv:1710.09099 (2017)

  21. Nabian, M.A., Meidani, H.: A deep neural network surrogate for high-dimensional random partial differential equations. arXiv preprint arXiv:1806.02957 (2018)

  22. Narasimhan, T.: Fourier’s heat conduction equation: history, influence, and connections. Rev. Geophys. 37(1), 151–172 (1999)

    Article  Google Scholar 

  23. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. vol. 28. Cambridge University Press (2001)

    Google Scholar 

  24. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ruthotto, L., Haber, E.: Deep neural networks motivated by partial differential equations. arXiv preprint arXiv:1804.04272 (2018)

  26. Sharma, R., Farimani, A.B., Gomes, J., Eastman, P., Pande, V.: Weakly-supervised deep learning of heat transport via physics informed loss. arXiv preprint arXiv:1807.11374 (2018)

  27. Singhal, A., Sinha, P., Pant, R.: Use of deep learning in modern recommendation system: a summary of recent works. arXiv preprint arXiv:1712.07525 (2017)

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Stewart, I., Tall, D.: Complex Analysis. Cambridge University Press (2018)

    Google Scholar 

  30. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  31. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating eulerian fluid simulation with convolutional networks. arXiv preprint arXiv:1607.03597 (2016)

  32. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education (2007)

    Google Scholar 

  33. Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer (2015)

    Google Scholar 

  34. Zhang, K., Li, D., Chang, K., Zhang, K., Li, D.: Electromagnetic Theory for Microwaves and Optoelectronics. Springer (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Zakeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakeri, B., Monsefi, A.K., Darafarin, B. (2020). Deep Learning Prediction of Heat Propagation on 2-D Domain via Numerical Solution. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_13

Download citation

Publish with us

Policies and ethics