Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 835))

Abstract

An interval approach to the concept of dimension is presented. The concept of quasiorthogonal dimension is obtained by relaxing exact orthogonality so that angular distances between unit vectors are constrained to a fixed closed symmetric interval about \(\pi /2\). An exponential number of such quasiorthogonal vectors exist as the Euclidean dimension increases. Lower bounds on quasiorthogonal dimension are proven using geometry of high-dimensional spaces and a separate argument is given utilizing graph theory. Related notions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Achlioptas, Datbase-friendly random projections, in ACM Symposium on the Principles of Database Systems, (2001) pp. 274–281; see also Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comp. Sys. Sci. 66(4), 671–687 (2003)

    Google Scholar 

  2. N. Alon, Problems and results in extremal combinatorics. Disc. Math. 273, 1–3 (2003)

    Article  MathSciNet  Google Scholar 

  3. R.B. Ash, Information Theory, Dover Publication New York, 1990 (orig. 1965)

    Google Scholar 

  4. K. Ball, An elementary introduction to modern convex geometry, in Flavors of Geometry, ed. by S. Levy, MSRI Publication 31, Cambridge University Press, (1997), pp. 1–56

    Google Scholar 

  5. C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973)

    Google Scholar 

  6. E. Bingham, H. Mannila, Random projection in dimensionality reduction: applications to image and text data, in KDD-2001: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, New York), pp. 245–250

    Google Scholar 

  7. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A nonasymptotic theory of independence (Clarendon Press, Oxford, 2012)

    Google Scholar 

  8. B. Bollobaś, P. Erdős, Cliques in random graphs. Math. Proc. Camb. Phil. Soc. 80, 419–427 (1976)

    Article  MathSciNet  Google Scholar 

  9. J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52, 46–52 (1985)

    Article  MathSciNet  Google Scholar 

  10. C. Brezinsky, K.A. Driver, M. Redivo-Zaglia, Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Num. Math. 48, 157–168 (2004)

    Article  MathSciNet  Google Scholar 

  11. S. Dasgupta, A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algor. 22(1), 60–65 (2003), http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf

  12. J. Dénes, A.D. Keedwell, Latin Squares and Their Application (English University Press, London, 1974)

    Google Scholar 

  13. R. Diestel, Graph Theory, vol. 173, 3rd edn. Graduate Texts in Mathematics (Springer, Berlin, 2005)

    Google Scholar 

  14. F. Deutsch, Best Approximation in Inner Product Spaces (Springer, New York, 2001)

    Google Scholar 

  15. L. Engebretsen, P. Indyk, R. O’Donnell, Derandomized dimension reduction with applications, in Proceeding SODA ’02, (Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, 2002), pp. 705–712

    Google Scholar 

  16. P. Erdős, H. Hanani, On a limit theorem in combinatorial analysis. Publ. Math. Debrecen 10, 10–13 (1963)

    MathSciNet  MATH  Google Scholar 

  17. J. Farkhani, A quasi-orthogonal space-time block code. IEEE Trans. Commun. 49(1), 1–4 (2001)

    Article  Google Scholar 

  18. J.R. Firth, Wikipedia, Retrieved 6 Sept 2017

    Google Scholar 

  19. J. Fan, S. Guo, N. Hao, Variance estimation using refitted cross-validation in ultrahigh dimensional regression. J. R. Statist. Soc. B 74, Part 1, 37–65 (2012)

    Google Scholar 

  20. D. Fradkin, D. Madigan, Experiments with random projections for machine learning, in Proceedings KDD 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Washington, DC, 2003) pp. 517–522

    Google Scholar 

  21. S.I. Gallant, Methods for generating or revising context vectors for a plurality of word stems, US Patent US5325298 A, Filing date Sept. 3, 1991; Publ. date 26 June 1994. Assignee: HNC Inc. (Hecht-Nielsen Neurocomputing Corp.)

    Google Scholar 

  22. A.N. Gorban, I.Y. Tyukin, D.V. Prokhorov, K.I. Sofeikov, Approximation with random bases: pro et contra. Inf. Sci. 364–365, 129–145 (2016)

    Article  Google Scholar 

  23. M. Gromov, Isoperimetry of waists and concentration of maps. GAFA, Geom. Funct. Anal. 13, 178–215 (2013)

    Google Scholar 

  24. A. Hajnal, E. Szemerdi, Proof of a conjecture of Erds, in Combinatorial Theory and Its Applications, ed. by P. Erdős, A. Rényi, V.T. Sós, vol. 2 (North-Holland, Amsterdam, 1970), pp. 601–623

    Google Scholar 

  25. P. Hall, J.S. Marron, A. Neeman, Geometric representation of high dimension, low sample size data. J. R. Statist. Soc. B 67(3), 427–444, (2005)

    Google Scholar 

  26. R.W. Hamming, Coding and Information Theory (Prentice-Hall, Englewood Cliff, NJ, 1986)

    Google Scholar 

  27. F. Harary, Graph Theory Addison-Wesley (Reading, MA, 1969)

    Google Scholar 

  28. R. Hecht-Nielsen, Context vectors: general purpose approximate meaning representations self-organized from raw data, in Computational Intelligence: Imitating Life, ed. by J. Zurada, R. Marks, C. Robinson, (IEEE Press, 1994), pp. 43–56

    Google Scholar 

  29. J.D. Horton, Sub Latin squares and incomplete orthogonal arrays. J. Comb. Th. A 16(1974), 23–33 (1974)

    Google Scholar 

  30. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz maps into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  Google Scholar 

  31. P.C. Kainen, Orthogonal dimension and tolerance, Technical Report (1992), https://www.researchgate.net

  32. P.C. Kainen, V. Kůrková, Quasiorthogonal dimension of Euclidean spaces. Appl. Math. Lett. 6(3), 7–10 (1993), https://www.sciencedirect.com

  33. S. Kaski, Dimensionality reduction by random mapping: fast similarity computation for clustering, in Proceedings 1998 IEEE IJCNN (1998) pp. 413–418

    Google Scholar 

  34. F. Knoll, Johnson-Lindenstrauss Transformations, Ph.D. Dissertation, (Clemson University, 2017)

    Google Scholar 

  35. R.B. Kearfott, V. Kreinovich (ed.), Applications of Interval Computations (Kluwer, Dordrecht, 1996)

    Google Scholar 

  36. A.N. Kolmogorov, V.M. Tikhomorov, \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in functional spaces, AMS Transl. (Ser. 2), 17, 277–364 (1961); orig. Usp. Mat. Nauk.14(2), 3–86 (1959)

    Google Scholar 

  37. V. Kreinovich, Interval Computing, http://cs.utep.edu/interval-comp/main.html

  38. V. Kůrková, R. Hecht-Nielsen, Quasiorthogonal sets, Technical Report INC-9204 (1992)

    Google Scholar 

  39. V. Kůrková, M. Sanguineti, Estimates of covering numbers of convex sets with slowly decaying orthogonal subsets. Discret. Appl. Math. 155, 1930–1942 (2007)

    Article  MathSciNet  Google Scholar 

  40. M.A. Lazarus et al., Predictive modeling of consumer financial behavior, US Patent US6430539 B1, Filing date May 6 1999; Publ. date Aug. 6 2002

    Google Scholar 

  41. N.N. Lebedev, Special Functions and Their Applications, transl. R.A. Silverman, Dover Publications, Inc., 1972 (orig. Prentice-Hall, 1965)

    Google Scholar 

  42. P. Lèvy, Problèmes Concrets d’Analyse Functionelle (Gauthier-Villard, Paris, 1951)

    Google Scholar 

  43. P. Li, T.J. Hastie, K.W. Church, Very sparse random projections, in Proceedings KDD 2006, (Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining) (2006), pp. 287–296

    Google Scholar 

  44. N. Linial, E. London, E. Rabinovich, The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–246 (2001)

    Article  MathSciNet  Google Scholar 

  45. B.J. MacLennan, Information processing in the dendritic net, in Rethinking Neural Networks: Quantum Fields and Biological Data, ed. by K.H. Pribram (Lawrence Erlbaum, Hillsdale, 1993), pp. 161–197

    Google Scholar 

  46. C.D. Manning, P. Raghavan, H. Schűtze, Introduction to Information Retrieval (Cambridge University Press, New York, NY, 2008); online edition, April 1 2009, https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

  47. J. Matoušek, Lectures on Discrete Geometry (Springer, New York, 2002)

    Google Scholar 

  48. D. Matula, The largest clique size in a random graph, Technical Report CS-7608, Department of Computer Science, Southern Methodist University (1976), https://s2.smu.edu/~matula/Tech-Report76.pdf

  49. V.D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed spaces, vol. 1200, Lecture Notes in Mathematics (Springer, Berlin, 1986)

    Google Scholar 

  50. R.N. Mohan, M.H. Lee, S.S. Pokhre, On orthogonality of latin squares (2006), arXiv:cs/0604041v2 [cs.DM]

  51. R.E. Moore, Interval arithmetic and automatic error analysis in digital computing, Ph.D. Dissertation (Stanford University, 1962)

    Google Scholar 

  52. J. Pennington, R. Socher, C.D. Manning, GloVe: global vectors for word representation, in Conference on Empirical Methods in Natural Language Processing (EMNLP, 2014)

    Google Scholar 

  53. R.A. Rankin, The closest packing of spherical caps in \(n\) dimensions. Proc. Glasgow Math. Assoc. 2, 139–144 (1955)

    Article  MathSciNet  Google Scholar 

  54. R.A. Rankin, On packing of spheres in Hilbert space. Proc. Glasgow Math. Assoc. 2, 145–146 (1955)

    Article  MathSciNet  Google Scholar 

  55. V. Rődl, On a packing and covering problem. Europ. J. Comb. 5, 69–78 (1985)

    Article  MathSciNet  Google Scholar 

  56. R.J. Ryser, Combinatorial Mathematics (Mathematical Association of America, Washington, DC, 1963)

    Google Scholar 

  57. M. Sahlgren, An introduction to random indexing, in Methods and Applications of Semantic Indexing Workshop at the 7th Int’l Conference on Terminology and Knowledge Engineering, vol. 87 (TermNet News: Newsletter of International Cooperation in Terminology, 2005)

    Google Scholar 

  58. M. Sahlgren, The distributional hypothesis. Rivista di Linguistica 20(1), 33–53 (2008)

    Google Scholar 

  59. H.H. Schaefer, M.P. Wolff, Topological Vector Spaces, 2nd edn. (Springer, New York, 1999)

    Google Scholar 

  60. E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. Mathematische Nachrichten 1(1948), 81–115 (1948)

    Google Scholar 

  61. J. Spencer, Ten Lectures on the Probabilistic Method (CBMS-NSF, SIAM, Philadelphia, PA, 1987)

    Google Scholar 

  62. W. Su, X.-G. Xia, Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Trans. Inf. Theory 50(10), 2331–2347 (2004)

    Article  MathSciNet  Google Scholar 

  63. A.D. Wyner, Random packings and coverings of the unit \(n\)-sphere. Bell Syst. Tech. J. 46, 2111–2118 (1967)

    Article  MathSciNet  Google Scholar 

  64. Y.G. Yan, On the exact value of packing spheres in a class of Orlicz function spaces. J. Convex Anal. 11(2), 394–400 (2004)

    MathSciNet  Google Scholar 

  65. K. Yoshida, Functional Analysis (Springer, Berlin, 1965)

    Google Scholar 

  66. K. Zhang, Spherical cap packing asymptotics and rank-extreme detection. IEEE Trans. Inf. Theory (in press, 2017) https://arxiv.org/pdf/1511.06198.pdf

Download references

Acknowledgements

V. Kůrková was partially supported by the Czech Grant Foundation grant GA19-05704S and institutional support of the Institute of Computer Science RVO 67985807. P. C. Kainen received research support from Georgetown University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Kainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kainen, P.C., Kůrková, V. (2020). Quasiorthogonal Dimension. In: Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R. (eds) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence, vol 835. Springer, Cham. https://doi.org/10.1007/978-3-030-31041-7_35

Download citation

Publish with us

Policies and ethics