Skip to main content

Enactive Robot Assisted Didactics (ERAD): The Role of the Maker Movement

  • Conference paper
  • First Online:
Educational Robotics in the Context of the Maker Movement (Edurobotics 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 946))

Included in the following conference series:

Abstract

The aim of the presented work is to outline a theoretical approach to the integration of robots into didactic contexts, with a specific focus on enactive didactic processes. In the first part of the article we will discuss, respectively, the framework of social robotics and that of enaction. In the second section we will theorize about ways to combine these two frameworks into an effective “Enactive Robot Assisted Didactics”. The final discussion will reflect on the central position that robotic design plays in this cross-fertilization, and the outstanding role that the maker movement can play in this undertaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Varela, F., Thompson, E., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge (1991)

    Book  Google Scholar 

  2. Rossi, P.G.: Didattica enattiva. Franco Angeli, Milano (2011)

    Google Scholar 

  3. Foerster, H.V.: Erkenntnistheorien und Selbstorganisation. Der Diskurs des Radikalen Konstruktivismus. Suhrkamp, Frankfurt (1987)

    Google Scholar 

  4. Bocchi, G., Damiano, L.: The enactive mind: an epistemological framework for radically embodied didactics. Educ. Sci. Soc. 4(1) (2013)

    Google Scholar 

  5. Maturana, H., Varela, F.: Autopoiesis and Cognition. Reidel, Dordrecht (1980)

    Book  Google Scholar 

  6. Wiener, N.: Cybernetics. Sci. Am. 179(5), 14–19 (1948)

    Article  Google Scholar 

  7. Pitts, W., McCulloch, W.: How we know universals: the perception of auditory and visual forms. Bull. Math. Biophys. 9(1947), 127–147 (1947)

    Article  Google Scholar 

  8. Duffy, B.R., Rooney, C., O’Hare, G.M., O’Donoghue, R.P.S.: What is a social robot? In: 10th Irish Conference on Artificial Intelligence & Cognitive Science. University College Cork, Ireland, 1–3 September 1999

    Google Scholar 

  9. Dumouchel, P., Damiano, D.: Living with Robots. Harvard University Press (2017)

    Google Scholar 

  10. Damiano, L., Dumouchel, P., Lehmann, H.: Towards human–robot affective co-evolution overcoming oppositions in constructing emotions and empathy. Int. J. Soc. Robot. 7(1), 7–18 (2015)

    Article  Google Scholar 

  11. Airenti, G.: The cognitive bases of anthropomorphism: from relatedness to empathy. Int. J. Soc. Robot. 7(1), 117–127 (2015)

    Article  Google Scholar 

  12. Broekens, J., Heerink, M., Rosendal, H.: Assistive social robots in elderly care: a review. Gerontechnology 8(2), 94–103 (2009)

    Article  Google Scholar 

  13. Feil-Seifer, D., Mataric, M.: Robot-assisted therapy for children with autism spectrum disorders. In: Proceedings of the 7th International Conference on Interaction Design and Children, pp. 49–52. ACM (2008)

    Google Scholar 

  14. Wada, K., Shibata, T., Musha, T., Kimura, S.: Robot therapy for elders affected by dementia. IEEE Eng. Med. Biol. Mag. 27(4) (2008)

    Article  Google Scholar 

  15. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of Human Understanding. New Science Library/Shambhala Publications (1987)

    Google Scholar 

  16. Brown, J.S., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educ. Res. 18(1), 32–42 (1989)

    Article  Google Scholar 

  17. Damiano, E.: La mediazione didattica. Per una teoria dell’insegnamento: Per una teoria dell’insegnamento. FrancoAngeli (2013)

    Google Scholar 

  18. Laurillard, D.: Teaching as a design science. building pedagogical patterns for learning and technology (2012)

    Google Scholar 

  19. Dautenhahn, K., Nehaniv, C.L., Walters, M.L., Robins, B., Kose-Bagci, H., Mirza, N.A., Blow, M.: KASPAR–a minimally expressive humanoid robot for human–robot interaction research. Appl. Bionics Biomech. 6(3–4), 369–397 (2009)

    Article  Google Scholar 

  20. Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A.S., Pintea, S., David, D.O.: Using the social robot probo as a social story telling agent for children with ASD. Interact. Stud. 13(3), 348–372 (2012)

    Article  Google Scholar 

  21. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Directors Assoc. 13(2), 114–120 (2012)

    Article  Google Scholar 

  22. Damiano, L., Dumouchel, P.: Anthropomorphism in human-robot co-evolution. Front. Psychol. 9, 468 (2018)

    Article  Google Scholar 

  23. Barakova, E.I., Lourens, T.: Expressing and interpreting emotional movements in social games with robots. Pers. Ubiquitous Comput. 14(5), 457–467 (2010)

    Article  Google Scholar 

  24. Fridin, M.: Storytelling by a kindergarten social assistive robot: a tool for constructive learning in preschool education. Comput. Educ. 70, 53–64 (2014)

    Article  Google Scholar 

  25. Highfield, K., Mulligan, J., Hedberg, J.: Early mathematics learning through exploration with programmable toys. In: Proceedings of the Joint Meeting of PME, vol. 32, pp. 169–176 (2008)

    Google Scholar 

  26. Blow, M., Dautenhahn, K., Appleby, A., Nehaniv, C.L., Lee, D.: The art of designing robot faces: Dimensions for human-robot interaction. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 331–332. ACM (2006)

    Google Scholar 

  27. Breazeal, C.: Emotion and sociable humanoid robots. Int. J. Hum Comput Stud. 59(1–2), 119–155 (2003)

    Article  Google Scholar 

  28. Argyle, M.: Non-verbal communication in human social interaction (1972)

    Google Scholar 

  29. Gazzola, V., Rizzolatti, G., Wicker, B., Keysers, C.: The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35(4), 1674–1684 (2007)

    Article  Google Scholar 

  30. Gallese, V.: The shared manifold hypothesis. from mirror neurons to empathy. J. Conscious. Stud. 8(5–6), 33–50 (2001)

    Google Scholar 

  31. Lehmann, H., Broz, F.: Contagious yawning in human-robot interaction. In: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 173–174. ACM (2018)

    Google Scholar 

  32. Mori, M.: The uncanny valley. Energy 7(4), 33–35 (1970)

    Google Scholar 

  33. Nishio, S., Ishiguro, H., Hagita, N.: Geminoid: teleoperated android of an existing person. In: Humanoid Robots: New Developments. InTech (2007)

    Google Scholar 

  34. Lehmann, H., Roncone, A., Pattacini, U., Metta, G.: Physiologically inspired blinking behavior for a humanoid robot. In: International Conference on Social Robotics, pp. 83–93. Springer, Cham (2016)

    Chapter  Google Scholar 

  35. Baxter, P., Ashurst, E., Read, R., Kennedy, J., Belpaeme, T.: Robot education peers in a situated primary school study: personalisation promotes child learning. PLoS ONE 12(5), e0178126 (2017)

    Article  Google Scholar 

  36. Henkemans, O.A.B., Bierman, B.P., Janssen, J., Neerincx, M.A., Looije, R., van der Bosch, H., van der Giessen, J.A.: Using a robot to personalise health education for children with diabetes type 1: a pilot study. Patient Educ. Couns. 92(2), 174–181 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmann, H., Rossi, P.G. (2020). Enactive Robot Assisted Didactics (ERAD): The Role of the Maker Movement. In: Moro, M., Alimisis, D., Iocchi, L. (eds) Educational Robotics in the Context of the Maker Movement. Edurobotics 2018. Advances in Intelligent Systems and Computing, vol 946. Springer, Cham. https://doi.org/10.1007/978-3-030-18141-3_2

Download citation

Publish with us

Policies and ethics