Skip to main content

Fuzzy Activation of Rough Cognitive Ensembles Using OWA Operators

  • Chapter
  • First Online:
Uncertainty Management with Fuzzy and Rough Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 377))

  • 371 Accesses

Abstract

Rough Cognitive Ensembles (RCEs) can be defined as a multiclassifier system composed of a set of Rough Cognitive Networks (RCNs), each operating at a different granularity degree. While this model is capable of outperforming several traditional classifiers reported in the literature, there is still room for enhancing its performance. In this paper, we propose a fuzzy strategy to activate the RCN input neurons before performing the inference process. This fuzzy activation mechanism essentially quantifies the extent to which an object belongs to the intersection between its similarity class and each granular region in the RCN topology. The numerical simulations have shown that the improved ensemble classifier significantly outperforms the original RCE model for the adopted datasets. After comparing the proposed model to 14 well-known classifiers, the experimental evidence confirms that our scheme yields very promising classification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  3. Balamash, A., Pedrycz, W., Al-Hmouz, R., Morfeq, A.: Granular classifiers and their design through refinement of information granules. Soft Comput. 1–15 (2015)

    Google Scholar 

  4. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction, vol. 717. Springer Science & Business Media (2012)

    Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Bryll, R., Gutierrez-Osuna, R., Quek, F.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recogn. 36(6), 1291–1302 (2003)

    Article  MATH  Google Scholar 

  8. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  9. Cleary, J.G., Trigg, L.E., et al.: K*: an instance-based learner using an entropic distance measure. In: Proceedings of the 12th International Conference on Machine Learning, vol. 5, pp. 108–114 (1995)

    Chapter  Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2012)

    Google Scholar 

  11. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  13. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, 1989. IJCNN, pp. 593–605. IEEE (1989)

    Google Scholar 

  14. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  15. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  16. Kohavi, R.: The power of decision tables. In: Machine Learning: ECML-95, pp. 174–189. Springer, Berlin (1995)

    Google Scholar 

  17. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  18. Kosko, B.: Hidden patterns in combined and adaptive knowledge networks. Int. J. Approx. Reason. 2(4), 377–393 (1988)

    Article  MATH  Google Scholar 

  19. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Machine Learn. 59(1–2), 161–205 (2005)

    Article  MATH  Google Scholar 

  20. Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013)

  21. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. In: Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 15–27. MIT Press, Cambridge (1988)

    Google Scholar 

  22. Nápoles, G., Falcon, R., Papageorgiou, E., Bello, R., Vanhoof, K.: Rough cognitive ensembles. Int. J. Approx. Reason. 85, 79–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nápoles, G., Grau, I., Papageorgiou, E., Bello, R., Vanhoof, K.: Rough cognitive networks. Knowl. Based Syst. 91, 46–61 (2016)

    Article  Google Scholar 

  24. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  25. Pedrycz, W., Homenda, W.: From fuzzy cognitive maps to granular cognitive maps. IEEE Trans. Fuzzy Syst. 22(4), 859–869 (2014)

    Article  Google Scholar 

  26. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman Publishers (1993)

    Google Scholar 

  27. Shi, H.: Best-first decision tree learning. Ph.D. thesis, Citeseer (2007)

    Google Scholar 

  28. Smeeton, N.C.: Early history of the kappa statistic. Biometrics 41, 795 (1985)

    Google Scholar 

  29. Su, J., Zhang, H.: A fast decision tree learning algorithm. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, pp. 500–505. AAAI’06, AAAI Press (2006)

    Google Scholar 

  30. Sumner, M., Frank, E., Hall, M.: Speeding up logistic model tree induction. In: Knowledge Discovery in Databases: PKDD 2005, pp. 675–683. Springer (2005)

    Google Scholar 

  31. Turner, K., Oza, N.C.: Decimated input ensembles for improved generalization. In: International Joint Conference on Neural Networks, 1999. IJCNN’99, vol. 5, pp. 3069–3074. IEEE (1999)

    Google Scholar 

  32. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–93 (1945)

    Article  MathSciNet  Google Scholar 

  33. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6(1), 1–34 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. In: Readings in Fuzzy Sets for Intelligent Systems, pp. 80–87. Elsevier (1993)

    Google Scholar 

  35. Yao, Y.: Three way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) Rough Sets and Knowledge Technology, pp. 642–649. Springer, Berlin (2009)

    Chapter  Google Scholar 

  36. Yao, Y.: The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 181(1), 1080–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bello, M. et al. (2019). Fuzzy Activation of Rough Cognitive Ensembles Using OWA Operators. In: Bello, R., Falcon, R., Verdegay, J. (eds) Uncertainty Management with Fuzzy and Rough Sets. Studies in Fuzziness and Soft Computing, vol 377. Springer, Cham. https://doi.org/10.1007/978-3-030-10463-4_16

Download citation

Publish with us

Policies and ethics