Skip to main content

Abstract

In this chapter, we first present a general algorithm for a two-stage feedback controller design for linear continuous-time, time-invariant, dynamic systems following the results of Radisavljevic-Gajic and Rose (2014), Sect. 2.1. The proposed design significantly reduces the computational requirements and provides flexibility of designing different types of controllers for different dynamic parts of the system – subsystems that form the given system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali J, Hoang N, Hissain M, Dochain D (2015) Review and classification of recent observers applied in chemical process systems. Comput Chem Eng 76:27–41

    Article  Google Scholar 

  • Amjadifard R, Beheshti M, Yazdanpaanah M (2011) Robust stabilization for a singularly perturbed systems. Trans ASME J Dyn Syst Meas Control 133:051004-1–051004-6

    Article  Google Scholar 

  • Bingulac S, Van Landingham H (1993) Algorithms for computer aided design of multivariable control systems. Marcel Dekker, New York

    Google Scholar 

  • Chen T (2012) Linear system theory and design. Oxford University Press, Oxford, UK

    Google Scholar 

  • Chen C-F, Pan S-T, Hsieh J-G (2002) Stability analysis of a class of uncertain discrete singularly perturbed systems with multiple time delays. Trans ASME J Dyn Syst Meas Control 124:467–472

    Article  Google Scholar 

  • Cipiti F, Pino L, Vita A, Lagana M, Rucupero V (2013) Experimental investigation on a methane fuel processor for polymer electrolyte fuel cells. Int J Hydrogen Energy 38:2387–2397

    Article  Google Scholar 

  • Demetriou M, Kazantzis N (2005) Natural observer design for singularly perturbed vector second-order systems. Trans ASME J Dyn Syst Meas Control 127:648–655

    Article  Google Scholar 

  • Dong X, El-Gorashi T, Elmirghani J (2012) Use of renewable energy in an IP over WDM network with data centers. IET Optoelectron 6:155–164

    Article  Google Scholar 

  • Gao Y-H, Bai Z-Z (2010) On inexact Newton methods based on doubling iteration scheme for non-symmetric algebraic Riccati equations. Numer Linear Algebra Appl. https://doi.org/10.1002/nla.727

    Article  MathSciNet  Google Scholar 

  • Golub G, Van Loan C (2012) Matrix computations. Academic Press

    Google Scholar 

  • Gou B, Na W, Diong B (2010) Fuel cells: modeling, control, and applications. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Hoffmann P, Dorgan B (2012) Tomorrow’s energy: hydrogen, ‘fuel cells, and prospects for a cleaner planet. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Hsiao FH, Hwang JD, ST P (2001) Stabilization of discrete singularly perturbed systems under composite observer-based controller. Trans ASME J Dyn Syst Meas Control 123:132–139

    Article  Google Scholar 

  • Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Kokotovic P, Khalil H, O’Reilly J (1999) Singular perturbation methods in control: analysis and design. Academic Press, Orlando

    Book  Google Scholar 

  • Kuehn C (2015) Multiple time scale dynamics. Springer, Cham

    Book  Google Scholar 

  • Laghrouche S, Harmouche M, Ahmed F, Chitour Y (2015) Control of PEMFC air-feed system using Lyapunov-based robust and adaptive higher order sliding mode control. IEEE Trans Control Syst Technol 23:1594–1601

    Article  Google Scholar 

  • Laurim D, Salcedo J, Garcia-Nieto S, Martinez M (2010) Model predictive control relevant identification: multiple input multiple output against multiple input single output. IET Control Theory Appl 4:1756–1766

    Article  MathSciNet  Google Scholar 

  • Matraji I, Laghtouche S, Jemei S, Wack M (2013) Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding model. Appl Energy 104:945–957

    Article  Google Scholar 

  • Matraji I, Ahmed F, Laghrouche S, Wack M (2015) Comparison of robust and adaptive second order sliding mode control in PEMFC air-feed systems. Int J Hydrogen Energy 40:9491–9504

    Article  Google Scholar 

  • Medanic J (1982) Geometric properties and invariant manifolds of the Riccati equation. IEEE Trans Autom Control 27:670–677

    Article  MathSciNet  Google Scholar 

  • Na K, Gou B (2008) Feedback linearization based nonlinear control for PEM fuel cells. IEEE Trans Energy Convers 23:179–190

    Article  Google Scholar 

  • Na K, Gou B, Diong B (2007) Nonlinear control of PEM fuel cells by exact linearization. IEEE Trans Ind Appl 43:1426–1433

    Article  Google Scholar 

  • Naidu DS, Calise A (2001) Singular perturbations and time scales in guidance and control of aerospace systems: survey. AIAA J Guid Control Dyn 24:1057–1078

    Article  Google Scholar 

  • Ogata K (1995) Discrete-time control systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Phillips R (1980a) Reduced order modeling and control of two-time scale discrete systems. Int J Control 31:65–780

    Article  Google Scholar 

  • Phillips R (1980b) Two-stage design of linear feedback controls. IEEE Trans Autom Control 25:1220–1223

    Article  Google Scholar 

  • Phillips R (1983) The equivalence of time-scale decomposition techniques used in the analysis and design of linear systems. Int J Control 37:1239–1257

    Article  MathSciNet  Google Scholar 

  • Pilloni A, Pisano A, Usai E (2015) Observer based air excess ratio control of a PEM fuel cell system via high order sliding mode. IEEE Trans Ind Electron 6:1–10

    Google Scholar 

  • Pukrushpan J, Stefanopoulou A, Peng H (2004a) Control of fuel cell power systems: principles, modeling and analysis and feedback design. Springer, London

    Book  Google Scholar 

  • Pukrushpan J, Peng H, Stefanopoulou A (2004b) Control oriented modeling and analysis for automotive fuel cell systems. Trans ASME J Dyn Syst Meas Control 126:14–25

    Article  Google Scholar 

  • Pukrushpan J, Stefanopoulou A, Varigonda S, Eborn J, Haugstteter C (2006) Control-oriented model of fuel processor for hydrogen generation in fuel cell applications. Control Eng Pract 14:277–293

    Article  Google Scholar 

  • Radisavljevic V (2011) On controllability and system constraints of a linear models of proton exchange membrane and solid oxide fuel cells. J Power Sources 196:8549–8552

    Article  Google Scholar 

  • Radisavljevic-Gajic V (2015c) Full- and reduced-order linear observer implementations in MATLAB/Simulink. IEEE Control Syst Mag 35:91–101

    MathSciNet  Google Scholar 

  • Radisavljevic-Gajic V, Rose P (2014) A new two stage design of feedback controllers for a hydrogen gas reformer. Int J Hydrogen Energy 39:11738–11748

    Article  Google Scholar 

  • Radisavljevic-Gajic V, Rose P, Clayton G (2015) Two-stage design of linear feedback controllers for proton exchange membrane fuel cells. In: ASME dynamic systems and control conference, Columbus, doi: https://doi.org/10.1115/DSCC2015-9973

  • Serra M, Aguado J, Ansede X, Riera J (2005) Controllability analysis of decentralized linear controllers for polymeric fuel cells. J Power Sources 151:93–102

    Article  Google Scholar 

  • Shapira I, Ben-Asher J (2004) Singular perturbation analysis of optimal glide. AIAA J Guid Control Dyn 27:915–918

    Article  Google Scholar 

  • Simoncini S (2016) Computational methods for linear matrix equations. SIAM Rev 58:377–441

    Article  MathSciNet  Google Scholar 

  • Sinha A (2007) Linear systems: optimal and robust control. Francis & Taylor, Boca Raton

    Book  Google Scholar 

  • Stewart G (1973) Matrix computations. Academic Press

    Google Scholar 

  • Tong S, Qian D, Fang J, Li H (2013) Integrated modeling and variable fuzzy control of a hydrogen-air fuel cell system. Int J Electrochem Sci 8:3636–3652

    Google Scholar 

  • Tsourapas V, Stefanopoulou A, Sun J (2007) Model-based control of an integrated fuel cell and fuel processor with exhaust heat regulation. IEEE Trans Control Syst Technol 15:233–244

    Article  Google Scholar 

  • Wang Z, Ghorbel F (2006) Control of closed kinematic chains using a singularly perturbed dynamics model. Trans ASME J Dyn Syst Meas Control 128:142–151

    Article  Google Scholar 

  • Wang F-C, Guo Y-F (2015) Robustness analysis of PEMFC systems on the production line. Int J Hydrogen Energy 40:1959–1966

    Article  Google Scholar 

  • Wang Y-X, Kim Y-B (2014) Real-time control of air excess ratio of a PEM fuel cell system. IEEE/ASME Trans Mechatron 19:852–861

    Article  Google Scholar 

  • Zhou K, Doyle J (1998) Essential of robust control. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Zhu J, Zhang D, King K (2001) Reforming of CH4 by partial oxidation: thermodynamic and kinetic analysis. Fuel 80:899–905

    Article  Google Scholar 

  • Nehrir M, Wang C (2009) Modeling and control of fuel cells: distributed generation applications. Wiley, Hoboken

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radisavljević-Gajić, V., Milanović, M., Rose, P. (2019). Continuous-Time Two-Stage Feedback Controller Design. In: Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10389-7_2

Download citation

Publish with us

Policies and ethics