Skip to main content

Coffee Crops Variables Monitoring: A Case of Study in Ecuadorian Andes

  • Conference paper
  • First Online:
Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II (AACC 2018)

Abstract

Coffee bean is one of the most cultivated products worldwide. Ecuadorian Andes have good conditions for the production of coffee, but many farmers have small plantations which difficult utilization of technology to improve crops productivity. Few studies focused on analyzing climatic variables that affect the optimum development of the coffee plant. We have developed a low cost a system to monitor environmental and soil parameters in coffee plantations in real time, in addition of keeping historical records of the measurements, is designed, developed and implemented to facilitate farmers management of crops. Also the system compare sensed values with optimum range for each of them and alert farmer if some action is need using a user-friendly interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global hunger continues to rise, new un report says. Technical report, Food and Agriculture Organization of the United Nations (FAO) (2018). Accessed 17 Sept 2018

    Google Scholar 

  2. Abad Alameda, A.S.: Diseño e implementación de un sistema de seguimiento de parámetros ambientales en plantaciones de café (2017)

    Google Scholar 

  3. Ahmed, R.Z., Biradar, R.C.: Data aggregation for pest identification in coffee plantations using wsn: a hybrid model. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 139–146. IEEE (2015)

    Google Scholar 

  4. Ahmed, R.Z., Biradar, R.C.: Energy aware routing in WSN for pest detection in coffee plantation. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 398–403. IEEE (2016)

    Google Scholar 

  5. Altieri, M.Á., Nicholls, C.I.: Biodiversidad y manejo de plagas en agroecosistemas, vol. 2. Icaria Editorial (2007)

    Google Scholar 

  6. Arboleda, E.R., Fajardo, A.C., Medina, R.P.: An image processing technique for coffee black beans identification. In: 2018 IEEE International Conference on Innovative Research and Development (ICIRD), pp. 1–5. IEEE (2018)

    Google Scholar 

  7. Arguello Guadalupe, C.S., León Ruiz, J.E., Díaz Moyota, P.B., Verdugo Bernal, C.M., Caceres Mena, M.E., García Rosero, L.M., Granda de Freitas, J., Saavedra Gallo, C.G.: Incidencia de la cadena de valor en el desarrollo sustentable del cultivo de café robusta (coffea canephora) estudio de caso: Parroquia san jacinto del búa, provincia de santo domingo de los tsáchilas-ecuador. Europ. Sci. J. ESJ 13(1) (2017)

    Google Scholar 

  8. Caicedo-Ortiz, J.G., De-la Hoz-Franco, E., Ortega, R.M., Piñeres-Espitia, G., Combita-Niño, H., Estévez, F., Cama-Pinto, A.: Monitoring system for agronomic variables based in wsn technology on cassava crops. Comput. Electron. Agric. 145, 275–281 (2018)

    Article  Google Scholar 

  9. Ceballos, M.R., Gorricho, J.L., Palma Gamboa, O., Huerta, M.K., Rivas, D., Erazo Rodas, M.: Fuzzy system of irrigation applied to the growth of habanero pepper (capsicum chinense jacq.) under protected conditions in yucatan, mexico. Int. J. Distrib. Sens. Networks 11(6), 123543 (2015)

    Article  Google Scholar 

  10. Culman, M., Portocarrero, J.M., Guerrero, C.D., Bayona, C., Torres, J.L., de Farias, C.M.: Palmnet: an open-source wireless sensor network for oil palm plantations. In: 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 783–788. IEEE (2017)

    Google Scholar 

  11. Cumbis, E., Jiménez, R.: Análisis Sectorial del Café en la Zona 7 del Ecuador, p. 132 (2012). http://dspace.utpl.edu.ec/bitstream/123456789/2703/1/338X1227.pdf

  12. Erazo, M., Rivas, D., Pérez, M., Galarza, O., Bautista, V., Huerta, M., Rojo, J.L.: Design and implementation of a wireless sensor network for rose greenhouses monitoring. In: 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 256–261. IEEE (2015)

    Google Scholar 

  13. Erazo-Rodas, M., Sandoval-Moreno, M., Muñoz-Romero, S., Huerta, M., Rivas-Lalaleo, D., Naranjo, C., Rojo-Álvarez, J.: Multiparametric monitoring in equatorian tomato greenhouses (i): Wireless sensor network benchmarking. Sensors 18(8), 2555 (2018)

    Article  Google Scholar 

  14. Fernandez, L., Huerta, M., Sagbay, G., Clotet, R., Soto, A.: Sensing climatic variables in a orchid greenhouse. In: 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS), pp. 101–104. IEEE (2017)

    Google Scholar 

  15. Fernandez, L., Huerta, M., Sagbay, G., Clotet, R., Soto, A.: Sensing climatic variables in a orchid greenhouse. In: 2017 International Caribbean Conference on Devices, Circuits and Systems, ICCDCS 2017, pp. 101–104 (2017). https://doi.org/10.1109/ICCDCS.2017.7959719

  16. Garcia, D.C., Martínez, G.Á., Garcia, M.E.: Raspberry pi y arduino: semilleros en innovación tecnológica para la agricultura de precisión. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones 2(1), 74–82 (2018)

    Google Scholar 

  17. Guambi, L.A.D.: Caracterización física y organoléptica de cafés arábigos en los principales agroecosistemas del Ecuador. INIAP Archivo Historico (2003)

    Google Scholar 

  18. Guillermo, J.C., García-Cedeño, A., Rivas-Lalaleo, D., Huerta, M., Clotet, R.: IoT architecture based on Wireless Sensor Network applied to agricultural monitoring: A case of study of cacao crops in Ecuador. In: Second International Conference of ICT for Adapting Agriculture to Climate Change. Springer (2018)

    Google Scholar 

  19. Ipanaqué, W., Belupú, I., Castillo, J., Salazar, J.: Internet of things applied to monitoring fermentation process of cocoa at the piura’s mountain range. In: 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–5. IEEE (2017)

    Google Scholar 

  20. Jiménez, A., Massa, P.: Producción de café y variables climáticas: El caso de Espíndola, Ecuador. Economía 40, 117–137 (2015). http://www.redalyc.org/pdf/1956/195648804006.pdf

  21. Jiménez, M., Jiménez, A., Lozada, P., Jiménez, S., Jiménez, C.: Using a wireless sensors network in the sustainable management of African palm oil solid waste. In: 2013 Tenth International Conference on Information Technology: New Generations (ITNG), pp. 133–137. IEEE (2013)

    Google Scholar 

  22. Kodali, R.K., Soratkal, S., Boppana, L.: WSN in coffee cultivation. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 661–666. IEEE (2016)

    Google Scholar 

  23. Laban, N., Abdellatif, B., Ebied, H.M., Shedeed, H.A., Tolba, M.F.: Performance enhancement of satellite image classification using a convolutional neural network. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 673–682. Springer (2017)

    Google Scholar 

  24. Lin, B.B.: The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. Forest Meteorol. 150(4), 510–518 (2010). https://doi.org/10.1016/j.agrformet.2009.11.010

    Article  Google Scholar 

  25. Mancuso, M., Bustaffa, F.: A wireless sensors network for monitoring environmental variables in a tomato greenhouse 10 (2006)

    Google Scholar 

  26. Martins, G.D., Galo, M.L.B.T., Vieira, B.S.: Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(12), 5395–5403 (2017)

    Article  Google Scholar 

  27. Medina-Meléndez, J.A., Ruiz-Nájera, R.E., Gómez-Castañeda, J.C., Sánchez-Yáñez, J.M., Gómez-Alfaro, G., Pinto-Molina, O.: Estudio del sistema de producción de café (coffea arabica l.) en la región frailesca, chiapas. CienciaUAT 10(2), 33–43 (2016)

    Article  Google Scholar 

  28. Palomino, U., Alexandra, J.: Análisis del impacto de la política económica en el sector agrario del Ecuador 2007 2015 (2017). http://repositorio.utmachala.edu.ec/handle/48000/10509

  29. Piamonte, M., Huerta, M., Clotet, R., Padilla, J., Vargas, T., Rivas, D.: WSN prototype for African oil palm bud rot monitoring. In: International Conference of ICT for Adapting Agriculture to Climate Change, pp. 170–181. Springer (2017)

    Google Scholar 

  30. Pinto, C., Furukawa, J., Fukai, H., Tamura, S.: Classification of green coffee bean images based on defect types using convolutional neural network (CNN). In: 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), pp. 1–5. IEEE (2017)

    Google Scholar 

  31. Ramos, P.J., Avendaño, J., Prieto, F.A.: Measurement of the ripening rate on coffee branches by using 3d images in outdoor environments. Comput. Ind. 99, 83–95 (2018)

    Article  Google Scholar 

  32. Erazo Rodas, M., Sandoval Moreno, M., MuñoZ Romero, S., Huerta, M., Rivas-Lalaleo, D., Rojo-Álvarez, J.: Multiparametric monitoring in equatorian tomato greenhouses (ii): Energy consumption dynamics. Sensors 18(8),  2556 (2018)

    Article  Google Scholar 

  33. Erazo Rodas, M., Sandoval-Moreno, M., Muñoz-Romero, S., Huerta, M., Rivas-Lalaleo, D., Rojo-Álvarez, J.: Multiparametric monitoring in equatorian tomato greenhouses (iii): Environmental measurement dynamics. Sensors 18(8), 2557 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express their gratitude to the support of the Thematic Network: RiegoNets (CYTED project 514RT0486), as well to PLATANO project by Telecommunications and Telematics Research Group (GITEL) from Universidad Politécnica Salesiana, Cuenca - Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Abad , Juan Farez , Juan Carlos Guillermo , Andrea García-Cedeño , Roger Clotet or Mónica Huerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abad, J. et al. (2019). Coffee Crops Variables Monitoring: A Case of Study in Ecuadorian Andes. In: Corrales, J., Angelov, P., Iglesias, J. (eds) Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II. AACC 2018. Advances in Intelligent Systems and Computing, vol 893. Springer, Cham. https://doi.org/10.1007/978-3-030-04447-3_14

Download citation

Publish with us

Policies and ethics